基于分数- smo的面向对象系统测试用例优化

Satyajeet Panigrahi, A. Jena
{"title":"基于分数- smo的面向对象系统测试用例优化","authors":"Satyajeet Panigrahi, A. Jena","doi":"10.4018/IJOSSP.2021010103","DOIUrl":null,"url":null,"abstract":"This paper introduces the technique to select the test cases from the unified modeling language (UML) behavioral diagram. The UML behavioral diagram describes the boundary, structure, and behavior of the system that is fed as input for generating the graph. The graph is constructed by assigning the weights, nodes, and edges. Then, test case sequences are created from the graph with minimal fitness value. Then, the optimal sequences are selected from the proposed fractional-spider monkey optimization (fractional-SMO). The developed fractional-SMO is designed by integrating fractional calculus and SMO. Thus, the efficient test cases are selected based on the optimization algorithm that uses fitness parameters, like coverage and fault. Simulations are performed via five synthetic UML diagrams taken from the dataset. The performance of the proposed technique is computed using coverage and the number of test cases. The maximal coverage of 49 and the minimal number of test cases as 2,562 indicate the superiority of the proposed technique.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"282 3 1","pages":"41-59"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of Test Cases in Object-Oriented Systems Using Fractional-SMO\",\"authors\":\"Satyajeet Panigrahi, A. Jena\",\"doi\":\"10.4018/IJOSSP.2021010103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the technique to select the test cases from the unified modeling language (UML) behavioral diagram. The UML behavioral diagram describes the boundary, structure, and behavior of the system that is fed as input for generating the graph. The graph is constructed by assigning the weights, nodes, and edges. Then, test case sequences are created from the graph with minimal fitness value. Then, the optimal sequences are selected from the proposed fractional-spider monkey optimization (fractional-SMO). The developed fractional-SMO is designed by integrating fractional calculus and SMO. Thus, the efficient test cases are selected based on the optimization algorithm that uses fitness parameters, like coverage and fault. Simulations are performed via five synthetic UML diagrams taken from the dataset. The performance of the proposed technique is computed using coverage and the number of test cases. The maximal coverage of 49 and the minimal number of test cases as 2,562 indicate the superiority of the proposed technique.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"282 3 1\",\"pages\":\"41-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJOSSP.2021010103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2021010103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了从统一建模语言(UML)行为图中选择测试用例的技术。UML行为图描述了作为生成图的输入的系统的边界、结构和行为。图是通过分配权重、节点和边来构建的。然后,从具有最小适应度值的图中创建测试用例序列。然后,从提出的分数-蜘蛛猴优化(分数- smo)中选择最优序列。将分数阶微积分与SMO相结合,设计了改进的分数阶SMO。因此,基于使用适应度参数(如覆盖率和故障)的优化算法来选择有效的测试用例。模拟是通过从数据集中提取的五个合成UML图来执行的。所提出的技术的性能是使用覆盖率和测试用例的数量来计算的。49的最大覆盖率和2562的最小测试用例数量表明了所建议的技术的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of Test Cases in Object-Oriented Systems Using Fractional-SMO
This paper introduces the technique to select the test cases from the unified modeling language (UML) behavioral diagram. The UML behavioral diagram describes the boundary, structure, and behavior of the system that is fed as input for generating the graph. The graph is constructed by assigning the weights, nodes, and edges. Then, test case sequences are created from the graph with minimal fitness value. Then, the optimal sequences are selected from the proposed fractional-spider monkey optimization (fractional-SMO). The developed fractional-SMO is designed by integrating fractional calculus and SMO. Thus, the efficient test cases are selected based on the optimization algorithm that uses fitness parameters, like coverage and fault. Simulations are performed via five synthetic UML diagrams taken from the dataset. The performance of the proposed technique is computed using coverage and the number of test cases. The maximal coverage of 49 and the minimal number of test cases as 2,562 indicate the superiority of the proposed technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
期刊最新文献
Organizational Influencers in Open-Source Software Projects Enhancing Clustering Performance Using Topic Modeling-Based Dimensionality Reduction Cross Project Software Refactoring Prediction Using Optimized Deep Learning Neural Network with the Aid of Attribute Selection Bug Triage Automation Approaches Modelling and Simulation of Patient Flow in the Emergency Department During the COVID-19 Pandemic Using Hierarchical Coloured Petri Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1