铝底电极抑制fbar中P2G-4声能泄漏:有限元模拟与实验结果

R. Ohara, N. Yanase, T. Yasumoto, M. Kawase, S. Masuko, T. Ohno, K. Sano
{"title":"铝底电极抑制fbar中P2G-4声能泄漏:有限元模拟与实验结果","authors":"R. Ohara, N. Yanase, T. Yasumoto, M. Kawase, S. Masuko, T. Ohno, K. Sano","doi":"10.1109/ULTSYM.2007.417","DOIUrl":null,"url":null,"abstract":"One of the most challenging issues in designing film bulk acoustic wave resonators (FBARs) is how to realize high-Q resonators. According to our experimental results, an acoustic leakage is the dominant loss factor at antiresonance frequency for FBARs with an aluminum bottom electrode. In this paper, we report simulation results obtained using the 2-dimensional finite element method (2D FEM), which was employed in order to confirm the above-mentioned acoustic loss mechanisms and optimize the design parameters of the resonator. As a result, optimizing the aluminum bottom electrode thickness and properly designing an attenuation structure that reflects the laterally propagating Lamb waves inside the resonator areas suppress the acoustical leakage significantly. Comparisons between FEM simulation and measured results in terms of the relationship between the Q-factors at antiresonance frequency and the structural parameters of the resonators are shown.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"6 1","pages":"1657-1660"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"P2G-4 Suppression of Acoustic Energy Leakage in FBARs with Al Bottom Electrode: FEM Simulation and Experimental Results\",\"authors\":\"R. Ohara, N. Yanase, T. Yasumoto, M. Kawase, S. Masuko, T. Ohno, K. Sano\",\"doi\":\"10.1109/ULTSYM.2007.417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most challenging issues in designing film bulk acoustic wave resonators (FBARs) is how to realize high-Q resonators. According to our experimental results, an acoustic leakage is the dominant loss factor at antiresonance frequency for FBARs with an aluminum bottom electrode. In this paper, we report simulation results obtained using the 2-dimensional finite element method (2D FEM), which was employed in order to confirm the above-mentioned acoustic loss mechanisms and optimize the design parameters of the resonator. As a result, optimizing the aluminum bottom electrode thickness and properly designing an attenuation structure that reflects the laterally propagating Lamb waves inside the resonator areas suppress the acoustical leakage significantly. Comparisons between FEM simulation and measured results in terms of the relationship between the Q-factors at antiresonance frequency and the structural parameters of the resonators are shown.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"6 1\",\"pages\":\"1657-1660\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

如何实现高q谐振器是膜体声波谐振器设计中最具挑战性的问题之一。根据我们的实验结果,声泄漏是铝底电极fbar在反共振频率下的主要损耗因素。本文报道了利用二维有限元法(2D FEM)进行的仿真结果,以确定上述声损失机理并优化谐振器的设计参数。结果表明,优化铝底电极厚度,合理设计反射腔内横向传播的兰姆波的衰减结构,可显著抑制腔内漏声。对比了有限元模拟结果与实测结果在反共振频率处的q因子与谐振器结构参数的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P2G-4 Suppression of Acoustic Energy Leakage in FBARs with Al Bottom Electrode: FEM Simulation and Experimental Results
One of the most challenging issues in designing film bulk acoustic wave resonators (FBARs) is how to realize high-Q resonators. According to our experimental results, an acoustic leakage is the dominant loss factor at antiresonance frequency for FBARs with an aluminum bottom electrode. In this paper, we report simulation results obtained using the 2-dimensional finite element method (2D FEM), which was employed in order to confirm the above-mentioned acoustic loss mechanisms and optimize the design parameters of the resonator. As a result, optimizing the aluminum bottom electrode thickness and properly designing an attenuation structure that reflects the laterally propagating Lamb waves inside the resonator areas suppress the acoustical leakage significantly. Comparisons between FEM simulation and measured results in terms of the relationship between the Q-factors at antiresonance frequency and the structural parameters of the resonators are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10B-3 Vibrating Interventional Device Detection Using Real-Time 3D Color Doppler P5E-8 The Method of Reverberation-Ray Matrix - A New Matrix Analysis of Waves in Piezoelectric Laminates P1D-4 Characteristics of a Novel Magnetic Field Sensor Using Piezoelectric Vibrations P5C-3 Field Simulation Parameters Design for Realistic Statistical Parameters of Radio - Frequency Ultrasound Images 2F-1 Fabrication and Performance of a High-Frequency Geometrically Focussed Composite Transducer with Triangular Pillar Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1