3D打印铝板的超高速冲击性能

B. Davis, Richard A. Hagen, Robert J. McCandless, E. Christiansen, D. M. Lear
{"title":"3D打印铝板的超高速冲击性能","authors":"B. Davis, Richard A. Hagen, Robert J. McCandless, E. Christiansen, D. M. Lear","doi":"10.1115/hvis2019-055","DOIUrl":null,"url":null,"abstract":"\n NASA, JSC has been developing a light-weight, multi-functional sandwich core for habitable structure over the last several years. Typically honeycomb-based structures have been and still are a common structural component for many applications in the aerospace industry, unfortunately, honeycomb structures with an ordered, open path through the thickness have served to channel the micro-meteoroid or orbital debris into the pressure wall (instead of disassociating and decelerating). The development of a metallic open cell foam core has been explored to enhance the micro-meteoroid or orbital debris protection, which is heavier than comparable honeycomb-based structures when non-structural requirements for deep space environments (vacuum, micro-meteoroids/orbital debris, and radiation) have not been considered. While the metallic foam core represents a notable improvement in this area, there is an overwhelming need to further reduce the weight of space vehicles; especially when deep space (beyond low earth orbit, or LEO) is considered. NASA, JSC is currently developing a multi-functional sandwich panel using additive machining (3D printing), this effort evaluated the material response of a limited amount of 3D printed aluminum panels under hypervelocity impact conditions. The four 3D printed aluminum panels provided for this effort consisted of three body centric cubic lattice structure core and one kelvin cell structure core. Each panel was impacted once with nominally the same impact conditions (0.34cm diameter aluminum sphere impacting at 6.8 km/s at 0 degrees to surface normal). All tests were impacted successfully, with the aforementioned impact conditions. Each of the test panels maintained their structural integrity from the hypervelocity impact event with no damage present on the back side of the panel for any of the tests. These tests and future tests will be used to enhance development of 3D printed structural panels.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypervelocity impact performance of 3D printed aluminum panels\",\"authors\":\"B. Davis, Richard A. Hagen, Robert J. McCandless, E. Christiansen, D. M. Lear\",\"doi\":\"10.1115/hvis2019-055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n NASA, JSC has been developing a light-weight, multi-functional sandwich core for habitable structure over the last several years. Typically honeycomb-based structures have been and still are a common structural component for many applications in the aerospace industry, unfortunately, honeycomb structures with an ordered, open path through the thickness have served to channel the micro-meteoroid or orbital debris into the pressure wall (instead of disassociating and decelerating). The development of a metallic open cell foam core has been explored to enhance the micro-meteoroid or orbital debris protection, which is heavier than comparable honeycomb-based structures when non-structural requirements for deep space environments (vacuum, micro-meteoroids/orbital debris, and radiation) have not been considered. While the metallic foam core represents a notable improvement in this area, there is an overwhelming need to further reduce the weight of space vehicles; especially when deep space (beyond low earth orbit, or LEO) is considered. NASA, JSC is currently developing a multi-functional sandwich panel using additive machining (3D printing), this effort evaluated the material response of a limited amount of 3D printed aluminum panels under hypervelocity impact conditions. The four 3D printed aluminum panels provided for this effort consisted of three body centric cubic lattice structure core and one kelvin cell structure core. Each panel was impacted once with nominally the same impact conditions (0.34cm diameter aluminum sphere impacting at 6.8 km/s at 0 degrees to surface normal). All tests were impacted successfully, with the aforementioned impact conditions. Each of the test panels maintained their structural integrity from the hypervelocity impact event with no damage present on the back side of the panel for any of the tests. These tests and future tests will be used to enhance development of 3D printed structural panels.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,NASA、JSC一直在为可居住的结构开发一种轻质、多功能的夹层核心。典型的蜂窝结构已经并且仍然是航空航天工业中许多应用的常见结构部件,不幸的是,蜂窝结构在厚度上具有有序的开放路径,用于将微流星体或轨道碎片引导到压力壁上(而不是分离和减速)。在不考虑深空环境(真空、微流星体/轨道碎片和辐射)的非结构要求时,探索了金属开孔泡沫芯的开发,以增强对微流星体或轨道碎片的保护,比类似的蜂窝式结构更重。虽然金属泡沫芯是这方面的显著改进,但迫切需要进一步减轻空间飞行器的重量;特别是考虑到深空(低地球轨道或LEO之外)时。NASA, JSC目前正在使用增材加工(3D打印)开发多功能夹心板,这项工作评估了有限数量的3D打印铝板在超高速冲击条件下的材料响应。为这项工作提供的四个3D打印铝板由三个体心立方晶格结构核心和一个开尔文细胞结构核心组成。每个面板在名义上相同的冲击条件下撞击一次(0.34cm直径的铝球在与表面法线0度的情况下以6.8 km/s的速度撞击)。在上述冲击条件下,所有测试都成功进行了冲击。在超高速撞击事件中,每个测试面板都保持了其结构完整性,在任何测试中,面板的背面都没有出现损坏。这些测试和未来的测试将用于加强3D打印结构板的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hypervelocity impact performance of 3D printed aluminum panels
NASA, JSC has been developing a light-weight, multi-functional sandwich core for habitable structure over the last several years. Typically honeycomb-based structures have been and still are a common structural component for many applications in the aerospace industry, unfortunately, honeycomb structures with an ordered, open path through the thickness have served to channel the micro-meteoroid or orbital debris into the pressure wall (instead of disassociating and decelerating). The development of a metallic open cell foam core has been explored to enhance the micro-meteoroid or orbital debris protection, which is heavier than comparable honeycomb-based structures when non-structural requirements for deep space environments (vacuum, micro-meteoroids/orbital debris, and radiation) have not been considered. While the metallic foam core represents a notable improvement in this area, there is an overwhelming need to further reduce the weight of space vehicles; especially when deep space (beyond low earth orbit, or LEO) is considered. NASA, JSC is currently developing a multi-functional sandwich panel using additive machining (3D printing), this effort evaluated the material response of a limited amount of 3D printed aluminum panels under hypervelocity impact conditions. The four 3D printed aluminum panels provided for this effort consisted of three body centric cubic lattice structure core and one kelvin cell structure core. Each panel was impacted once with nominally the same impact conditions (0.34cm diameter aluminum sphere impacting at 6.8 km/s at 0 degrees to surface normal). All tests were impacted successfully, with the aforementioned impact conditions. Each of the test panels maintained their structural integrity from the hypervelocity impact event with no damage present on the back side of the panel for any of the tests. These tests and future tests will be used to enhance development of 3D printed structural panels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1