水泥生产过程的参数化研究

J. John
{"title":"水泥生产过程的参数化研究","authors":"J. John","doi":"10.1155/2020/4289043","DOIUrl":null,"url":null,"abstract":"The cement industry is one of the most intensive energy consumers in the industrial sectors. The energy consumption represents 40% to 60% of production cost. Additionally, the cement industry contributes around 5% to 8% of all man-made CO2 emissions. Physiochemical and thermochemical reactions involved in cement kilns are still not well understood because of their complexity. The reactions have a decisive influence on energy consumption, environmental degradation, and the cost of cement production. There are technical difficulties in achieving direct measurements of critical process variables in kiln systems. Furthermore, process simulation is used for design, development, analysis, and optimization of processes, when experimental tests are difficult to conduct. Moreover, there are several models for the purpose of studying the use of alternative fuels, cement clinker burning process, phase chemistry, and physical parameters. Nonetheless, most of them do not address real inefficiency taking place in the processes, equipment, and the overall system. This paper presents parametric study results of the four-stage preheater dry Rotary Kiln System (RKS) with a planetary cooler. The RKS at the Mbeya Cement Company (MCC) in Tanzania is used as a case study. The study investigated the effects of varying the RKS parameters against system behaviour, process operation, environment, and energy consumptions. Necessary data for the modelling of the RKS at the MCC plant were obtained either by daily operational measurements or laboratory analyses. The steady-state simulation model of the RKS was carried out through the Aspen Plus software. The simulation results were successfully validated using real operating data. Predictions from parametric studies suggest that monitoring and regulating exhaust gases could improve combustion efficiency, which, in turn, leads to conserving fuels and lowering production costs. Composition of exhaust gases also depends both on the type of fuel used and the amount of combustion air. The volume of exit flue gases depends on the amount of combustion air and infiltrating air in the RKS. The results obtained from the study suggest a potential of coal saving at a minimum of about , which approximates to 76,126 tons per year at the current kiln feed of 58,000 kg·h-1. Thus, this translates to a specific energy saving of about 1849.12 kJ·kgcl-1, with relatively higher clinker throughput. In this vein, process modelling provides effective, safe, and economical ways for assessing the performance of the RKS.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"37 1","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Parametric Studies of Cement Production Processes\",\"authors\":\"J. John\",\"doi\":\"10.1155/2020/4289043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cement industry is one of the most intensive energy consumers in the industrial sectors. The energy consumption represents 40% to 60% of production cost. Additionally, the cement industry contributes around 5% to 8% of all man-made CO2 emissions. Physiochemical and thermochemical reactions involved in cement kilns are still not well understood because of their complexity. The reactions have a decisive influence on energy consumption, environmental degradation, and the cost of cement production. There are technical difficulties in achieving direct measurements of critical process variables in kiln systems. Furthermore, process simulation is used for design, development, analysis, and optimization of processes, when experimental tests are difficult to conduct. Moreover, there are several models for the purpose of studying the use of alternative fuels, cement clinker burning process, phase chemistry, and physical parameters. Nonetheless, most of them do not address real inefficiency taking place in the processes, equipment, and the overall system. This paper presents parametric study results of the four-stage preheater dry Rotary Kiln System (RKS) with a planetary cooler. The RKS at the Mbeya Cement Company (MCC) in Tanzania is used as a case study. The study investigated the effects of varying the RKS parameters against system behaviour, process operation, environment, and energy consumptions. Necessary data for the modelling of the RKS at the MCC plant were obtained either by daily operational measurements or laboratory analyses. The steady-state simulation model of the RKS was carried out through the Aspen Plus software. The simulation results were successfully validated using real operating data. Predictions from parametric studies suggest that monitoring and regulating exhaust gases could improve combustion efficiency, which, in turn, leads to conserving fuels and lowering production costs. Composition of exhaust gases also depends both on the type of fuel used and the amount of combustion air. The volume of exit flue gases depends on the amount of combustion air and infiltrating air in the RKS. The results obtained from the study suggest a potential of coal saving at a minimum of about , which approximates to 76,126 tons per year at the current kiln feed of 58,000 kg·h-1. Thus, this translates to a specific energy saving of about 1849.12 kJ·kgcl-1, with relatively higher clinker throughput. In this vein, process modelling provides effective, safe, and economical ways for assessing the performance of the RKS.\",\"PeriodicalId\":30572,\"journal\":{\"name\":\"Journal of Energy\",\"volume\":\"37 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/4289043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/4289043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

水泥工业是工业部门中能源消耗最密集的行业之一。能源消耗占生产成本的40% - 60%。此外,水泥行业占所有人为二氧化碳排放量的5%至8%。水泥窑中涉及的物理化学和热化学反应由于其复杂性仍未得到很好的理解。这些反应对能源消耗、环境恶化和水泥生产成本有决定性的影响。在实现窑系统中关键过程变量的直接测量方面存在技术困难。此外,当实验测试难以进行时,工艺模拟用于工艺的设计、开发、分析和优化。此外,还有几个模型用于研究替代燃料的使用、水泥熟料燃烧过程、相化学和物理参数。尽管如此,它们中的大多数并没有解决在流程、设备和整个系统中发生的实际效率低下的问题。本文介绍了带行星冷却器的四级预热器干式回转窑系统的参数化研究结果。本文以坦桑尼亚Mbeya水泥公司(MCC)的RKS为例进行了研究。该研究调查了不同RKS参数对系统行为、过程操作、环境和能源消耗的影响。通过日常操作测量或实验室分析获得了MCC工厂RKS建模所需的数据。通过Aspen Plus软件建立了RKS的稳态仿真模型。用实际运行数据对仿真结果进行了验证。参数化研究的预测表明,监测和调节废气可以提高燃烧效率,从而节约燃料,降低生产成本。废气的成分也取决于所用燃料的类型和燃烧空气的量。出口烟道气的体积取决于RKS中燃烧空气和渗透空气的量。从研究中获得的结果表明,在目前的窑料为58,000 kg·h-1的情况下,每年节省煤炭的潜力至少约为76,126吨。因此,这可以转化为约1849.12 kJ·kgcl-1的特定节能,并具有相对较高的熟料吞吐量。在这种情况下,过程建模为评估RKS的性能提供了有效、安全和经济的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parametric Studies of Cement Production Processes
The cement industry is one of the most intensive energy consumers in the industrial sectors. The energy consumption represents 40% to 60% of production cost. Additionally, the cement industry contributes around 5% to 8% of all man-made CO2 emissions. Physiochemical and thermochemical reactions involved in cement kilns are still not well understood because of their complexity. The reactions have a decisive influence on energy consumption, environmental degradation, and the cost of cement production. There are technical difficulties in achieving direct measurements of critical process variables in kiln systems. Furthermore, process simulation is used for design, development, analysis, and optimization of processes, when experimental tests are difficult to conduct. Moreover, there are several models for the purpose of studying the use of alternative fuels, cement clinker burning process, phase chemistry, and physical parameters. Nonetheless, most of them do not address real inefficiency taking place in the processes, equipment, and the overall system. This paper presents parametric study results of the four-stage preheater dry Rotary Kiln System (RKS) with a planetary cooler. The RKS at the Mbeya Cement Company (MCC) in Tanzania is used as a case study. The study investigated the effects of varying the RKS parameters against system behaviour, process operation, environment, and energy consumptions. Necessary data for the modelling of the RKS at the MCC plant were obtained either by daily operational measurements or laboratory analyses. The steady-state simulation model of the RKS was carried out through the Aspen Plus software. The simulation results were successfully validated using real operating data. Predictions from parametric studies suggest that monitoring and regulating exhaust gases could improve combustion efficiency, which, in turn, leads to conserving fuels and lowering production costs. Composition of exhaust gases also depends both on the type of fuel used and the amount of combustion air. The volume of exit flue gases depends on the amount of combustion air and infiltrating air in the RKS. The results obtained from the study suggest a potential of coal saving at a minimum of about , which approximates to 76,126 tons per year at the current kiln feed of 58,000 kg·h-1. Thus, this translates to a specific energy saving of about 1849.12 kJ·kgcl-1, with relatively higher clinker throughput. In this vein, process modelling provides effective, safe, and economical ways for assessing the performance of the RKS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
28 weeks
期刊最新文献
Current Status and Future Prospects of Small-Scale Household Biodigesters in Sub-Saharan Africa Strategic Sizing and Placement of Distributed Generation in Radial Distributed Networks Using Multiobjective PSO Catalytic Pyrolysis of Plastic Waste to Liquid Fuel Using Local Clay Catalyst Optimization of Syngas Quality for Fischer-Tropsch Synthesis Review and Design Overview of Plastic Waste-to-Pyrolysis Oil Conversion with Implications on the Energy Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1