{"title":"氮化硼纳米环场下苯的电子性质研究","authors":"M. Khaleghian, F. Azarakhshi","doi":"10.7508/IJND.2016.04.004","DOIUrl":null,"url":null,"abstract":"* Corresponding Author Email: mehr_khaleghian@yahoo.com How to cite this article Khaleghian M, Azarakhshi F. Electronic properties studies of Benzene under Boron Nitride nano ring field. Int. J. Nano Dimens., 2016; 7 (4): 290-294., DOI: 10.7508/ijnd.2016.04.004 Abstract In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12 nano ring in different orientations and distances, geometry of molecules with density functional theory B3LYP method and 6-31g *basis set optimized. Then calculated the natural bond orbital (NBO), nuclear independent chemical shift (NICS) and muliken charge of Benzene atoms alone and in the presence B12N12 done. The results of any order explains reduce the reactivity and increase stability of Benzene in the presence B12N12 nano ring and electron transfer from the nano ring to Benzene. The gaussian quantum chemistry package is used for all calculations.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electronic properties studies of Benzene under Boron Nitride nano ring field\",\"authors\":\"M. Khaleghian, F. Azarakhshi\",\"doi\":\"10.7508/IJND.2016.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"* Corresponding Author Email: mehr_khaleghian@yahoo.com How to cite this article Khaleghian M, Azarakhshi F. Electronic properties studies of Benzene under Boron Nitride nano ring field. Int. J. Nano Dimens., 2016; 7 (4): 290-294., DOI: 10.7508/ijnd.2016.04.004 Abstract In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12 nano ring in different orientations and distances, geometry of molecules with density functional theory B3LYP method and 6-31g *basis set optimized. Then calculated the natural bond orbital (NBO), nuclear independent chemical shift (NICS) and muliken charge of Benzene atoms alone and in the presence B12N12 done. The results of any order explains reduce the reactivity and increase stability of Benzene in the presence B12N12 nano ring and electron transfer from the nano ring to Benzene. The gaussian quantum chemistry package is used for all calculations.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/IJND.2016.04.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2016.04.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2
摘要
Khaleghian M, Azarakhshi F.氮化硼纳米环场下苯的电子特性研究。Int。J.纳米尺寸。, 2016;7(4): 290-294。摘要本研究选择了B12N12纳米环,因为它由4个6边环和极性键B-N组成,与非极性键C-C相比,它更适合研究其他化合物的吸收。考察了苯单独存在和B12N12纳米环在场下的反应性和稳定性。为了确定苯与B12N12纳米环在不同取向和距离下的非键相互作用能,采用密度泛函理论B3LYP方法和6-31g *基集对分子的几何结构进行了优化。然后计算了苯原子单独和有B12N12存在时的自然键轨道(NBO)、核无关化学位移(NICS)和穆利肯电荷。结果表明,在B12N12纳米环存在下,苯的反应活性降低,稳定性提高,电子从纳米环向苯转移。所有的计算都使用高斯量子化学包。
Electronic properties studies of Benzene under Boron Nitride nano ring field
* Corresponding Author Email: mehr_khaleghian@yahoo.com How to cite this article Khaleghian M, Azarakhshi F. Electronic properties studies of Benzene under Boron Nitride nano ring field. Int. J. Nano Dimens., 2016; 7 (4): 290-294., DOI: 10.7508/ijnd.2016.04.004 Abstract In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12 nano ring in different orientations and distances, geometry of molecules with density functional theory B3LYP method and 6-31g *basis set optimized. Then calculated the natural bond orbital (NBO), nuclear independent chemical shift (NICS) and muliken charge of Benzene atoms alone and in the presence B12N12 done. The results of any order explains reduce the reactivity and increase stability of Benzene in the presence B12N12 nano ring and electron transfer from the nano ring to Benzene. The gaussian quantum chemistry package is used for all calculations.