基于gce的多色图像分割融合模型

Lazhar Khelifi, M. Mignotte
{"title":"基于gce的多色图像分割融合模型","authors":"Lazhar Khelifi, M. Mignotte","doi":"10.1109/ICIP.2016.7532824","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new fusion model whose objective is to fuse multiple region-based segmentation maps to get a final better segmentation result. This new fusion model is based on an energy function originated from the global consistency error (GCE), a perceptual measure which takes into account the inherent multiscale nature of an image segmentation by measuring the level of refinement existing between two spatial partitions. Combined with a region merging/splitting prior, this new energy-based fusion model of label fields allows to define an interesting penalized likelihood estimation procedure based on the global consistency error criterion with which the fusion of basic, rapidly-computed segmentation results appears as a relevant alternative compared with other segmentation techniques proposed in the image segmentation field. The performance of our fusion model was evaluated on the Berkeley dataset including various segmentations given by humans.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"35 1","pages":"2574-2578"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"GCE-based model for the fusion of multiples color image segmentations\",\"authors\":\"Lazhar Khelifi, M. Mignotte\",\"doi\":\"10.1109/ICIP.2016.7532824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a new fusion model whose objective is to fuse multiple region-based segmentation maps to get a final better segmentation result. This new fusion model is based on an energy function originated from the global consistency error (GCE), a perceptual measure which takes into account the inherent multiscale nature of an image segmentation by measuring the level of refinement existing between two spatial partitions. Combined with a region merging/splitting prior, this new energy-based fusion model of label fields allows to define an interesting penalized likelihood estimation procedure based on the global consistency error criterion with which the fusion of basic, rapidly-computed segmentation results appears as a relevant alternative compared with other segmentation techniques proposed in the image segmentation field. The performance of our fusion model was evaluated on the Berkeley dataset including various segmentations given by humans.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"35 1\",\"pages\":\"2574-2578\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们引入了一种新的融合模型,其目标是融合多个基于区域的分割图,以获得更好的最终分割结果。这种新的融合模型基于源自全局一致性误差(GCE)的能量函数,GCE是一种感知度量,通过测量两个空间分区之间存在的细化水平来考虑图像分割固有的多尺度性质。结合区域合并/分裂先验,这种新的基于能量的标签域融合模型允许定义一个有趣的基于全局一致性错误准则的惩罚似然估计过程,与图像分割领域中提出的其他分割技术相比,融合基本的、快速计算的分割结果是一种相关的替代方案。我们的融合模型的性能在伯克利数据集上进行了评估,包括人类给出的各种分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GCE-based model for the fusion of multiples color image segmentations
In this work, we introduce a new fusion model whose objective is to fuse multiple region-based segmentation maps to get a final better segmentation result. This new fusion model is based on an energy function originated from the global consistency error (GCE), a perceptual measure which takes into account the inherent multiscale nature of an image segmentation by measuring the level of refinement existing between two spatial partitions. Combined with a region merging/splitting prior, this new energy-based fusion model of label fields allows to define an interesting penalized likelihood estimation procedure based on the global consistency error criterion with which the fusion of basic, rapidly-computed segmentation results appears as a relevant alternative compared with other segmentation techniques proposed in the image segmentation field. The performance of our fusion model was evaluated on the Berkeley dataset including various segmentations given by humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1