利用粒子群增强部分遮阳条件下太阳能光伏系统的性能

M. Dwivedi, Gitanjali Mehta, Asif Iqbal, H. Shekhar
{"title":"利用粒子群增强部分遮阳条件下太阳能光伏系统的性能","authors":"M. Dwivedi, Gitanjali Mehta, Asif Iqbal, H. Shekhar","doi":"10.1109/ICCCNT.2017.8204082","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to focus on performance enhancement of Photovoltaic system by improving Maximum Power Point Tracking (MPPT) techniques for sustainable green electricity production for future generation. The conventional MPPT algorithms performs well in uniform irradiance condition but unable to reach at the desired maximum power point (MPP)in partial shading condition (PSC). This demands necessity for development of efficient optimization techniques those are capable of reaching the global maximum power point (GMPP) in a PV system under PSC. Accordingly, this research work provides a comprehensive assessment on tracking performance of Particle Swarm Optimization (PSO) algorithm under PSC. A comparative study of this optimization technique has been performed against two conventional algorithms named Perturb and Observe (P&O) and Incremental Conductance (INC). Results confirm that the PSO algorithm guarantees fast convergence to GMPP and have better performance in comparison with the conventional ones.","PeriodicalId":6581,"journal":{"name":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","volume":"10 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance enhancement of solar PV system under partial shaded condition using PSO\",\"authors\":\"M. Dwivedi, Gitanjali Mehta, Asif Iqbal, H. Shekhar\",\"doi\":\"10.1109/ICCCNT.2017.8204082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this research is to focus on performance enhancement of Photovoltaic system by improving Maximum Power Point Tracking (MPPT) techniques for sustainable green electricity production for future generation. The conventional MPPT algorithms performs well in uniform irradiance condition but unable to reach at the desired maximum power point (MPP)in partial shading condition (PSC). This demands necessity for development of efficient optimization techniques those are capable of reaching the global maximum power point (GMPP) in a PV system under PSC. Accordingly, this research work provides a comprehensive assessment on tracking performance of Particle Swarm Optimization (PSO) algorithm under PSC. A comparative study of this optimization technique has been performed against two conventional algorithms named Perturb and Observe (P&O) and Incremental Conductance (INC). Results confirm that the PSO algorithm guarantees fast convergence to GMPP and have better performance in comparison with the conventional ones.\",\"PeriodicalId\":6581,\"journal\":{\"name\":\"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)\",\"volume\":\"10 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCNT.2017.8204082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2017.8204082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究的目的是通过改进最大功率点跟踪(MPPT)技术来提高光伏系统的性能,为未来一代提供可持续的绿色电力生产。传统的MPPT算法在均匀光照条件下表现良好,但在部分遮光条件下无法达到期望的最大功率点(MPP)。这就要求有必要开发有效的优化技术,使光伏系统在PSC下能够达到全局最大功率点(GMPP)。因此,本研究工作对粒子群优化算法在PSC下的跟踪性能进行了综合评价。将该优化技术与两种传统算法Perturb and Observe (P&O)和Incremental conductivity (INC)进行了比较研究。结果表明,粒子群算法能够快速收敛到GMPP,并且与传统算法相比具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance enhancement of solar PV system under partial shaded condition using PSO
The purpose of this research is to focus on performance enhancement of Photovoltaic system by improving Maximum Power Point Tracking (MPPT) techniques for sustainable green electricity production for future generation. The conventional MPPT algorithms performs well in uniform irradiance condition but unable to reach at the desired maximum power point (MPP)in partial shading condition (PSC). This demands necessity for development of efficient optimization techniques those are capable of reaching the global maximum power point (GMPP) in a PV system under PSC. Accordingly, this research work provides a comprehensive assessment on tracking performance of Particle Swarm Optimization (PSO) algorithm under PSC. A comparative study of this optimization technique has been performed against two conventional algorithms named Perturb and Observe (P&O) and Incremental Conductance (INC). Results confirm that the PSO algorithm guarantees fast convergence to GMPP and have better performance in comparison with the conventional ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study of energy optimization in wireless sensor networks based on efficient protocols with algorithms An Improved Dark Channel Prior for Fast Dehazing of Outdoor Images A Survey on Emerging Technologies in Wireless Body Area Network Identity Management in IoT using Blockchain Ad Service Detection - A Comparative Study Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1