锂离子电池参数识别与低通滤波器测量噪声抑制

Cong-Sheng Huang, T. Chow, M. Chow
{"title":"锂离子电池参数识别与低通滤波器测量噪声抑制","authors":"Cong-Sheng Huang, T. Chow, M. Chow","doi":"10.1109/ISIE.2017.8001575","DOIUrl":null,"url":null,"abstract":"The advent of Energy Management (EM) and Electric Vehicles (EV) have completely changed the use of batteries. Accurately estimating the remaining power in batteries has become increasingly important. In order to estimate precise battery state of charge (SOC)/state of health (SOH) value, accurate parameter identification is essential when constructing an accurate battery model. Even though we are able to exactly identify battery parameters offline, the precision of online parameter identification usually suffers from measurement noise, which is an unavoidable phenomenon. In this paper we investigate how battery parameter identification is influenced by measurement noise. The selection of a low pass filter is also discussed and a fourth order Butterworth filter is adopted to effectively reject high frequency measurement noise. This algorithm can help with the identification of battery parameter that rejects measurement noise and maintains the accuracy of online battery parameter identification for future online model-based battery SOC/SOH estimation.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"32 1","pages":"2075-2080"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Li-ion battery parameter identification with low pass filter for measurement noise rejection\",\"authors\":\"Cong-Sheng Huang, T. Chow, M. Chow\",\"doi\":\"10.1109/ISIE.2017.8001575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of Energy Management (EM) and Electric Vehicles (EV) have completely changed the use of batteries. Accurately estimating the remaining power in batteries has become increasingly important. In order to estimate precise battery state of charge (SOC)/state of health (SOH) value, accurate parameter identification is essential when constructing an accurate battery model. Even though we are able to exactly identify battery parameters offline, the precision of online parameter identification usually suffers from measurement noise, which is an unavoidable phenomenon. In this paper we investigate how battery parameter identification is influenced by measurement noise. The selection of a low pass filter is also discussed and a fourth order Butterworth filter is adopted to effectively reject high frequency measurement noise. This algorithm can help with the identification of battery parameter that rejects measurement noise and maintains the accuracy of online battery parameter identification for future online model-based battery SOC/SOH estimation.\",\"PeriodicalId\":6597,\"journal\":{\"name\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"32 1\",\"pages\":\"2075-2080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2017.8001575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

能源管理(EM)和电动汽车(EV)的出现彻底改变了电池的使用方式。准确估计电池剩余电量变得越来越重要。为了准确估计电池的荷电状态(SOC)/健康状态(SOH)值,在构建准确的电池模型时需要准确的参数识别。尽管我们可以离线准确识别电池参数,但在线参数识别的精度通常会受到测量噪声的影响,这是不可避免的现象。本文研究了测量噪声对电池参数辨识的影响。讨论了低通滤波器的选择,采用四阶巴特沃斯滤波器有效抑制高频测量噪声。该算法既能有效地抑制测量噪声,又能保持在线电池参数识别的准确性,为未来基于模型的在线电池SOC/SOH估计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Li-ion battery parameter identification with low pass filter for measurement noise rejection
The advent of Energy Management (EM) and Electric Vehicles (EV) have completely changed the use of batteries. Accurately estimating the remaining power in batteries has become increasingly important. In order to estimate precise battery state of charge (SOC)/state of health (SOH) value, accurate parameter identification is essential when constructing an accurate battery model. Even though we are able to exactly identify battery parameters offline, the precision of online parameter identification usually suffers from measurement noise, which is an unavoidable phenomenon. In this paper we investigate how battery parameter identification is influenced by measurement noise. The selection of a low pass filter is also discussed and a fourth order Butterworth filter is adopted to effectively reject high frequency measurement noise. This algorithm can help with the identification of battery parameter that rejects measurement noise and maintains the accuracy of online battery parameter identification for future online model-based battery SOC/SOH estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
32nd IEEE International Symposium on Industrial Electronics, ISIE 2023, Helsinki, Finland, June 19-21, 2023 Fuel Cell prognosis using particle filter: application to the automotive sector Bi-Level Distribution Network Planning Integrated with Energy Storage to PV-Connected Network Distributed adaptive anti-windup consensus tracking of networked systems with switching topologies Deep Belief Network and Dempster-Shafer Evidence Theory for Bearing Fault Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1