{"title":"LS和lad协同回归的快速算法","authors":"Jun Sun, Lingchen Kong, Mei Li","doi":"10.1142/s0217595922500014","DOIUrl":null,"url":null,"abstract":"With the development of modern science and technology, it is easy to obtain a large number of high-dimensional datasets, which are related but different. Classical unimodel analysis is less likely to capture potential links between the different datasets. Recently, a collaborative regression model based on least square (LS) method for this problem has been proposed. In this paper, we propose a robust collaborative regression based on the least absolute deviation (LAD). We give the statistical interpretation of the LS-collaborative regression and LAD-collaborative regression. Then we design an efficient symmetric Gauss–Seidel-based alternating direction method of multipliers algorithm to solve the two models, which has the global convergence and the Q-linear rate of convergence. Finally we report numerical experiments to illustrate the efficiency of the proposed methods.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Algorithms for LS and LAD-Collaborative Regression\",\"authors\":\"Jun Sun, Lingchen Kong, Mei Li\",\"doi\":\"10.1142/s0217595922500014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of modern science and technology, it is easy to obtain a large number of high-dimensional datasets, which are related but different. Classical unimodel analysis is less likely to capture potential links between the different datasets. Recently, a collaborative regression model based on least square (LS) method for this problem has been proposed. In this paper, we propose a robust collaborative regression based on the least absolute deviation (LAD). We give the statistical interpretation of the LS-collaborative regression and LAD-collaborative regression. Then we design an efficient symmetric Gauss–Seidel-based alternating direction method of multipliers algorithm to solve the two models, which has the global convergence and the Q-linear rate of convergence. Finally we report numerical experiments to illustrate the efficiency of the proposed methods.\",\"PeriodicalId\":8478,\"journal\":{\"name\":\"Asia Pac. J. Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Pac. J. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217595922500014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595922500014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Algorithms for LS and LAD-Collaborative Regression
With the development of modern science and technology, it is easy to obtain a large number of high-dimensional datasets, which are related but different. Classical unimodel analysis is less likely to capture potential links between the different datasets. Recently, a collaborative regression model based on least square (LS) method for this problem has been proposed. In this paper, we propose a robust collaborative regression based on the least absolute deviation (LAD). We give the statistical interpretation of the LS-collaborative regression and LAD-collaborative regression. Then we design an efficient symmetric Gauss–Seidel-based alternating direction method of multipliers algorithm to solve the two models, which has the global convergence and the Q-linear rate of convergence. Finally we report numerical experiments to illustrate the efficiency of the proposed methods.