Cora M. Märtens, Juliane Schöpfel, S. Bollmann, A. Hannemann, S. Zylla, M. B. Dahl, Friederike Gauß, Josef Schedl, M. Nauck, A. Petersmann
{"title":"带固定机构的气动管道系统载体原型的评估,允许自动卸载","authors":"Cora M. Märtens, Juliane Schöpfel, S. Bollmann, A. Hannemann, S. Zylla, M. B. Dahl, Friederike Gauß, Josef Schedl, M. Nauck, A. Petersmann","doi":"10.1515/cclm-2022-0193","DOIUrl":null,"url":null,"abstract":"Abstract Objectives A carrier prototype by Aerocom® (Schwäbisch Gmünd, Germany) for pneumatic tube systems (PTS) is able to transport 9 blood tubes which are automatically fixed by closing the lid. In this study, we examined the influence of the transport on blood sample quality using the carrier prototype comparing to courier transport and a conventional carrier (AD160, Aerocom®). Methods Triplicate blood samples sets (1 lithium heparin, 1 EDTA, 1 sodium citrate) of 35 probands were split among the transportation methods: 1. courier, 2. conventional carrier, and 3. carrier prototype. After transport 51 measurands from clinical chemistry, hematology and coagulation were measured and compared. Results Overall, 49 of the investigated 51 measurands showed a good concordance among the three transport types, especially between the conventional carrier and the carrier prototype. Focusing on well-known hemolysis sensitive measurands, potassium showed no statistically significant differences. However, between courier and both carrier types lactate dehydrogenase (LDH) and free hemoglobin (fHb) showed statistically significant shifts, whereas the clinical impact of the identified differences was neglectable. The median concentration of fHb, for example, was 0.29 g/L (18 µmol/L), 0.31 g/L (19 µmol/L) and 0.32 g/L (20 µmol/L) for courier transport, conventional carrier and carrier prototype, respectively. These differences cannot be resolved analytically since the minimal difference (MD) for fHb is 0.052 g/L (3.23 µmol/L), at this concentration. Conclusions The carrier prototype by Aerocom® is suitable for transportation of diagnostic blood samples. The overall workflow is improved by decreasing hands-on-time on the ward and laboratory while minimizing the risk of incorrectly packed carriers.","PeriodicalId":10388,"journal":{"name":"Clinical Chemistry and Laboratory Medicine (CCLM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of a pneumatic tube system carrier prototype with fixing mechanism allowing for automated unloading\",\"authors\":\"Cora M. Märtens, Juliane Schöpfel, S. Bollmann, A. Hannemann, S. Zylla, M. B. Dahl, Friederike Gauß, Josef Schedl, M. Nauck, A. Petersmann\",\"doi\":\"10.1515/cclm-2022-0193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives A carrier prototype by Aerocom® (Schwäbisch Gmünd, Germany) for pneumatic tube systems (PTS) is able to transport 9 blood tubes which are automatically fixed by closing the lid. In this study, we examined the influence of the transport on blood sample quality using the carrier prototype comparing to courier transport and a conventional carrier (AD160, Aerocom®). Methods Triplicate blood samples sets (1 lithium heparin, 1 EDTA, 1 sodium citrate) of 35 probands were split among the transportation methods: 1. courier, 2. conventional carrier, and 3. carrier prototype. After transport 51 measurands from clinical chemistry, hematology and coagulation were measured and compared. Results Overall, 49 of the investigated 51 measurands showed a good concordance among the three transport types, especially between the conventional carrier and the carrier prototype. Focusing on well-known hemolysis sensitive measurands, potassium showed no statistically significant differences. However, between courier and both carrier types lactate dehydrogenase (LDH) and free hemoglobin (fHb) showed statistically significant shifts, whereas the clinical impact of the identified differences was neglectable. The median concentration of fHb, for example, was 0.29 g/L (18 µmol/L), 0.31 g/L (19 µmol/L) and 0.32 g/L (20 µmol/L) for courier transport, conventional carrier and carrier prototype, respectively. These differences cannot be resolved analytically since the minimal difference (MD) for fHb is 0.052 g/L (3.23 µmol/L), at this concentration. Conclusions The carrier prototype by Aerocom® is suitable for transportation of diagnostic blood samples. The overall workflow is improved by decreasing hands-on-time on the ward and laboratory while minimizing the risk of incorrectly packed carriers.\",\"PeriodicalId\":10388,\"journal\":{\"name\":\"Clinical Chemistry and Laboratory Medicine (CCLM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Chemistry and Laboratory Medicine (CCLM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cclm-2022-0193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Chemistry and Laboratory Medicine (CCLM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cclm-2022-0193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of a pneumatic tube system carrier prototype with fixing mechanism allowing for automated unloading
Abstract Objectives A carrier prototype by Aerocom® (Schwäbisch Gmünd, Germany) for pneumatic tube systems (PTS) is able to transport 9 blood tubes which are automatically fixed by closing the lid. In this study, we examined the influence of the transport on blood sample quality using the carrier prototype comparing to courier transport and a conventional carrier (AD160, Aerocom®). Methods Triplicate blood samples sets (1 lithium heparin, 1 EDTA, 1 sodium citrate) of 35 probands were split among the transportation methods: 1. courier, 2. conventional carrier, and 3. carrier prototype. After transport 51 measurands from clinical chemistry, hematology and coagulation were measured and compared. Results Overall, 49 of the investigated 51 measurands showed a good concordance among the three transport types, especially between the conventional carrier and the carrier prototype. Focusing on well-known hemolysis sensitive measurands, potassium showed no statistically significant differences. However, between courier and both carrier types lactate dehydrogenase (LDH) and free hemoglobin (fHb) showed statistically significant shifts, whereas the clinical impact of the identified differences was neglectable. The median concentration of fHb, for example, was 0.29 g/L (18 µmol/L), 0.31 g/L (19 µmol/L) and 0.32 g/L (20 µmol/L) for courier transport, conventional carrier and carrier prototype, respectively. These differences cannot be resolved analytically since the minimal difference (MD) for fHb is 0.052 g/L (3.23 µmol/L), at this concentration. Conclusions The carrier prototype by Aerocom® is suitable for transportation of diagnostic blood samples. The overall workflow is improved by decreasing hands-on-time on the ward and laboratory while minimizing the risk of incorrectly packed carriers.