K. Purushothaman, B. Saravanakumar, S. Vijayakumar, B. Sethuraman, G. Shanmugam
{"title":"纳米碳纳米管附着介孔ag3o4 @NiO纳米复合材料用于混合超级电容器","authors":"K. Purushothaman, B. Saravanakumar, S. Vijayakumar, B. Sethuraman, G. Shanmugam","doi":"10.1080/10667857.2022.2135474","DOIUrl":null,"url":null,"abstract":"ABSTRACT The carbon nanotubes attached mesoporous Ag3O4-coated NiO nanosheets were prepared successfully through hydrothermal method. The structural, morphological and electrochemical properties of the prepared nanocomposite have been studied. The X-ray diffraction and Raman analysis confirms the presence of NiO, Ag3O4 and carbon nanotubes in the prepared sample. HRTEM images clearly show the coating of Ag3O4 on the NiO and attachment of carbon nanotubes. BET surface area analysis confirms the mesoporous nature of the prepared composite. The cyclic voltammetric (CV), galvanostatic charge-discharge (GCD) and impedance analysis were made to explore the electrochemical nature of the composite. Cyclic voltammograms reveals the maximum specific capacity of 415.86 mAh g−1 at the scan rate of 3 mV s−1 and GCD analysis exhibits the specific capacity of 416.63 mAh g−1 at 1 A g−1. The prepared nanocomposite retained 97% of maximum capacity even after 1500 cycles.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"20 1","pages":"3167 - 3173"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MWCNT attached mesoporousAg3O4 @NiO nanocomposite for hybrid supercapacitor applications\",\"authors\":\"K. Purushothaman, B. Saravanakumar, S. Vijayakumar, B. Sethuraman, G. Shanmugam\",\"doi\":\"10.1080/10667857.2022.2135474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The carbon nanotubes attached mesoporous Ag3O4-coated NiO nanosheets were prepared successfully through hydrothermal method. The structural, morphological and electrochemical properties of the prepared nanocomposite have been studied. The X-ray diffraction and Raman analysis confirms the presence of NiO, Ag3O4 and carbon nanotubes in the prepared sample. HRTEM images clearly show the coating of Ag3O4 on the NiO and attachment of carbon nanotubes. BET surface area analysis confirms the mesoporous nature of the prepared composite. The cyclic voltammetric (CV), galvanostatic charge-discharge (GCD) and impedance analysis were made to explore the electrochemical nature of the composite. Cyclic voltammograms reveals the maximum specific capacity of 415.86 mAh g−1 at the scan rate of 3 mV s−1 and GCD analysis exhibits the specific capacity of 416.63 mAh g−1 at 1 A g−1. The prepared nanocomposite retained 97% of maximum capacity even after 1500 cycles.\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"20 1\",\"pages\":\"3167 - 3173\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2022.2135474\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2022.2135474","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
采用水热法制备了碳纳米管附着ag3o4包覆的介孔NiO纳米片。研究了所制备的纳米复合材料的结构、形态和电化学性能。x射线衍射和拉曼分析证实了样品中存在NiO、Ag3O4和碳纳米管。HRTEM图像清晰地显示了Ag3O4在NiO表面的涂层和碳纳米管的附着。BET表面积分析证实了所制备的复合材料的介孔性质。通过循环伏安(CV)、恒流充放电(GCD)和阻抗分析来探讨复合材料的电化学性质。循环伏安图显示,在扫描速率为3 mV s−1时的最大比容量为415.86 mAh g−1,GCD分析显示,在1 A g−1时的最大比容量为416.63 mAh g−1。制备的纳米复合材料在1500次循环后仍能保持97%的最大容量。
MWCNT attached mesoporousAg3O4 @NiO nanocomposite for hybrid supercapacitor applications
ABSTRACT The carbon nanotubes attached mesoporous Ag3O4-coated NiO nanosheets were prepared successfully through hydrothermal method. The structural, morphological and electrochemical properties of the prepared nanocomposite have been studied. The X-ray diffraction and Raman analysis confirms the presence of NiO, Ag3O4 and carbon nanotubes in the prepared sample. HRTEM images clearly show the coating of Ag3O4 on the NiO and attachment of carbon nanotubes. BET surface area analysis confirms the mesoporous nature of the prepared composite. The cyclic voltammetric (CV), galvanostatic charge-discharge (GCD) and impedance analysis were made to explore the electrochemical nature of the composite. Cyclic voltammograms reveals the maximum specific capacity of 415.86 mAh g−1 at the scan rate of 3 mV s−1 and GCD analysis exhibits the specific capacity of 416.63 mAh g−1 at 1 A g−1. The prepared nanocomposite retained 97% of maximum capacity even after 1500 cycles.
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.