{"title":"带有时滞的静态神经网络状态估计的改进结果","authors":"Bin Wen, Hui Li, S. Zhong","doi":"10.1155/2016/1759650","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of state estimation for a class of delayed static neural networks. The purpose of the problem is to design a delay-dependent state estimator such that the dynamics of the error system is globally exponentially stable and a prescribed performance is guaranteed. Some improved delay-dependent conditions are established by constructing augmented Lyapunov-Krasovskii functionals (LKFs). The desired estimator gain matrix can be characterized in terms of the solution to LMIs (linear matrix inequalities). Numerical examples are provided to illustrate the effectiveness of the proposed method compared with some existing results.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Results on State Estimation of Static Neural Networks with Time Delay\",\"authors\":\"Bin Wen, Hui Li, S. Zhong\",\"doi\":\"10.1155/2016/1759650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problem of state estimation for a class of delayed static neural networks. The purpose of the problem is to design a delay-dependent state estimator such that the dynamics of the error system is globally exponentially stable and a prescribed performance is guaranteed. Some improved delay-dependent conditions are established by constructing augmented Lyapunov-Krasovskii functionals (LKFs). The desired estimator gain matrix can be characterized in terms of the solution to LMIs (linear matrix inequalities). Numerical examples are provided to illustrate the effectiveness of the proposed method compared with some existing results.\",\"PeriodicalId\":46052,\"journal\":{\"name\":\"Journal of Control Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Control Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/1759650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/1759650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Improved Results on State Estimation of Static Neural Networks with Time Delay
This paper studies the problem of state estimation for a class of delayed static neural networks. The purpose of the problem is to design a delay-dependent state estimator such that the dynamics of the error system is globally exponentially stable and a prescribed performance is guaranteed. Some improved delay-dependent conditions are established by constructing augmented Lyapunov-Krasovskii functionals (LKFs). The desired estimator gain matrix can be characterized in terms of the solution to LMIs (linear matrix inequalities). Numerical examples are provided to illustrate the effectiveness of the proposed method compared with some existing results.
期刊介绍:
Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.