基于LPC、CC、MFCC算法的说话人识别系统的比较评价

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY Memoria Investigaciones en Ingenieria Pub Date : 2019-01-01 DOI:10.36561/ing.17.6
Yesenia González, H. Juárez, O. Rocha, R. P. Hernández, A. Bermúdez
{"title":"基于LPC、CC、MFCC算法的说话人识别系统的比较评价","authors":"Yesenia González, H. Juárez, O. Rocha, R. P. Hernández, A. Bermúdez","doi":"10.36561/ing.17.6","DOIUrl":null,"url":null,"abstract":"This document proposes the evaluation of speaker recognition systems based on the LPC (Linear Predicting Coding), CC (Cepstral Coefficients) and MFCC (Mel Frequency Cepstral Coefficients) algorithms, used in the extraction of voice parameters. The evaluation, following an experimental quantitative methodology, consists of determining the change in performance when the input signal is exposed to different noise conditions (crowd and Gaussian noise), namely, at different levels of SNR, comparing the verification results for 2 speakers. Although all the systems decrease their performance in noisy environments, each one possesses intrinsically a certain level of robustness. This evaluation will serve as a reference in the construction of speaker recognition systems, which include voice enhancement systems to reduce noise.","PeriodicalId":42925,"journal":{"name":"Memoria Investigaciones en Ingenieria","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluación comparativa de sistemas de reconocimiento de locutor basados en los algoritmos LPC, CC y MFCC\",\"authors\":\"Yesenia González, H. Juárez, O. Rocha, R. P. Hernández, A. Bermúdez\",\"doi\":\"10.36561/ing.17.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This document proposes the evaluation of speaker recognition systems based on the LPC (Linear Predicting Coding), CC (Cepstral Coefficients) and MFCC (Mel Frequency Cepstral Coefficients) algorithms, used in the extraction of voice parameters. The evaluation, following an experimental quantitative methodology, consists of determining the change in performance when the input signal is exposed to different noise conditions (crowd and Gaussian noise), namely, at different levels of SNR, comparing the verification results for 2 speakers. Although all the systems decrease their performance in noisy environments, each one possesses intrinsically a certain level of robustness. This evaluation will serve as a reference in the construction of speaker recognition systems, which include voice enhancement systems to reduce noise.\",\"PeriodicalId\":42925,\"journal\":{\"name\":\"Memoria Investigaciones en Ingenieria\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoria Investigaciones en Ingenieria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36561/ing.17.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoria Investigaciones en Ingenieria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36561/ing.17.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于LPC(线性预测编码),CC(倒谱系数)和MFCC (Mel频率倒谱系数)算法的说话人识别系统的评估,用于提取语音参数。评估遵循实验定量方法,包括确定输入信号暴露于不同噪声条件(人群和高斯噪声)时的性能变化,即在不同的信噪比水平下,比较2个扬声器的验证结果。尽管所有系统在噪声环境下的性能都会下降,但每个系统本质上都具有一定的鲁棒性。该评价将作为构建包括声音增强系统以降低噪声的说话人识别系统的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluación comparativa de sistemas de reconocimiento de locutor basados en los algoritmos LPC, CC y MFCC
This document proposes the evaluation of speaker recognition systems based on the LPC (Linear Predicting Coding), CC (Cepstral Coefficients) and MFCC (Mel Frequency Cepstral Coefficients) algorithms, used in the extraction of voice parameters. The evaluation, following an experimental quantitative methodology, consists of determining the change in performance when the input signal is exposed to different noise conditions (crowd and Gaussian noise), namely, at different levels of SNR, comparing the verification results for 2 speakers. Although all the systems decrease their performance in noisy environments, each one possesses intrinsically a certain level of robustness. This evaluation will serve as a reference in the construction of speaker recognition systems, which include voice enhancement systems to reduce noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Memoria Investigaciones en Ingenieria
Memoria Investigaciones en Ingenieria ENGINEERING, MULTIDISCIPLINARY-
自引率
0.00%
发文量
6
审稿时长
16 weeks
期刊最新文献
Desarrollo de Sistema de Aislamiento Sísmico de Bajo Costo para Viviendas de Albañilería de 01 a 02 niveles Estrés abiótico en clima neotropical influencia la producción de pigmentos, capacidad antioxidante y expresión de desórdenes fisiológicos en manzanas Un Análisis Basado en Modelos de las Propiedades de Seguridad de Mimblewimble y las Implementaciones del Protocolo En defensa de una arquitectura extrema centrada en la base de datos Sobre la especificación y verificación del patrón de programación paralela PCR en TLA+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1