{"title":"超声空化技术制备晶粒细化ZA-27合金和ZA-27/Al2O3纳米复合材料的力学和腐蚀特性","authors":"M. Hayajneh, M. Almomani, A. AL-Akailah","doi":"10.4149/km_2021_3_195","DOIUrl":null,"url":null,"abstract":"In this study, the physical, mechanical, and chemical characteristics of grain refined zinc-aluminum alloy (ZA-27) and ZA-27 based nano-composite reinforced with 1wt.%Al2O3 nanoparticles have been investigated. Ultrasonic cavitation technique was used to fabricate these materials, and they were examined using optical microscopy, micro-Vickers hardness tester, and potentiodynamic polarization. Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) was used to investigate surface morphology and chemical elements of the specimens before and after corrosion testing to explain corrosion behaviors. ZA-27 alloy with fine equiaxed grains and 22 % porosity content with respect to the as-cast alloy was fabricated, resulting in a higher microhardness number. Potentiodynamic polarization test results revealed that it has better resistance for localized corrosion; the rapid dissolution of the zinc-rich phase presented in the interspacing region produces a salt layer quickly; this layer effectively protects the underlying metal surface from pits formation. The fabricated nano-composite has a porosity content of 54.2 % of the as-cast porosity content, and a smaller dendritic structure was formed with a uniform dispersion of the Al2O3 nanoparticles within the ZA-27 alloy matrix. Therefore, its microhardness number is greater than that of the as-cast alloy. The potentiodynamic polarization test analyses revealed that its uniform and localized corrosion resistance was improved. Micro-galvanic cells were formed between the primary and secondary phases in the small dendritic structure of the nano-composite, which improves its corrosion resistance. K e y w o r d s: nanoparticles, aluminum dioxide, corrosion resistance, ZA-27 alloy, ultrasonic cavitation, grain refinement","PeriodicalId":18519,"journal":{"name":"Metallic Materials","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical and corrosion characteristics of grain refined ZA-27 alloy and ZA-27/Al2O3 nano-composite produced by ultrasonic cavitation technique\",\"authors\":\"M. Hayajneh, M. Almomani, A. AL-Akailah\",\"doi\":\"10.4149/km_2021_3_195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the physical, mechanical, and chemical characteristics of grain refined zinc-aluminum alloy (ZA-27) and ZA-27 based nano-composite reinforced with 1wt.%Al2O3 nanoparticles have been investigated. Ultrasonic cavitation technique was used to fabricate these materials, and they were examined using optical microscopy, micro-Vickers hardness tester, and potentiodynamic polarization. Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) was used to investigate surface morphology and chemical elements of the specimens before and after corrosion testing to explain corrosion behaviors. ZA-27 alloy with fine equiaxed grains and 22 % porosity content with respect to the as-cast alloy was fabricated, resulting in a higher microhardness number. Potentiodynamic polarization test results revealed that it has better resistance for localized corrosion; the rapid dissolution of the zinc-rich phase presented in the interspacing region produces a salt layer quickly; this layer effectively protects the underlying metal surface from pits formation. The fabricated nano-composite has a porosity content of 54.2 % of the as-cast porosity content, and a smaller dendritic structure was formed with a uniform dispersion of the Al2O3 nanoparticles within the ZA-27 alloy matrix. Therefore, its microhardness number is greater than that of the as-cast alloy. The potentiodynamic polarization test analyses revealed that its uniform and localized corrosion resistance was improved. Micro-galvanic cells were formed between the primary and secondary phases in the small dendritic structure of the nano-composite, which improves its corrosion resistance. K e y w o r d s: nanoparticles, aluminum dioxide, corrosion resistance, ZA-27 alloy, ultrasonic cavitation, grain refinement\",\"PeriodicalId\":18519,\"journal\":{\"name\":\"Metallic Materials\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4149/km_2021_3_195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4149/km_2021_3_195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical and corrosion characteristics of grain refined ZA-27 alloy and ZA-27/Al2O3 nano-composite produced by ultrasonic cavitation technique
In this study, the physical, mechanical, and chemical characteristics of grain refined zinc-aluminum alloy (ZA-27) and ZA-27 based nano-composite reinforced with 1wt.%Al2O3 nanoparticles have been investigated. Ultrasonic cavitation technique was used to fabricate these materials, and they were examined using optical microscopy, micro-Vickers hardness tester, and potentiodynamic polarization. Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) was used to investigate surface morphology and chemical elements of the specimens before and after corrosion testing to explain corrosion behaviors. ZA-27 alloy with fine equiaxed grains and 22 % porosity content with respect to the as-cast alloy was fabricated, resulting in a higher microhardness number. Potentiodynamic polarization test results revealed that it has better resistance for localized corrosion; the rapid dissolution of the zinc-rich phase presented in the interspacing region produces a salt layer quickly; this layer effectively protects the underlying metal surface from pits formation. The fabricated nano-composite has a porosity content of 54.2 % of the as-cast porosity content, and a smaller dendritic structure was formed with a uniform dispersion of the Al2O3 nanoparticles within the ZA-27 alloy matrix. Therefore, its microhardness number is greater than that of the as-cast alloy. The potentiodynamic polarization test analyses revealed that its uniform and localized corrosion resistance was improved. Micro-galvanic cells were formed between the primary and secondary phases in the small dendritic structure of the nano-composite, which improves its corrosion resistance. K e y w o r d s: nanoparticles, aluminum dioxide, corrosion resistance, ZA-27 alloy, ultrasonic cavitation, grain refinement