G. Cuccuru, Simone Leo, L. Lianas, Michele Muggiri, Andrea Pinna, L. Pireddu, P. Uva, A. Angius, G. Fotia, G. Zanetti
{"title":"支持高通量生物信息学的自动化基础设施","authors":"G. Cuccuru, Simone Leo, L. Lianas, Michele Muggiri, Andrea Pinna, L. Pireddu, P. Uva, A. Angius, G. Fotia, G. Zanetti","doi":"10.1109/HPCSim.2014.6903742","DOIUrl":null,"url":null,"abstract":"The number of domains affected by the big data phenomenon is constantly increasing, both in science and industry, with high-throughput DNA sequencers being among the most massive data producers. Building analysis frameworks that can keep up with such a high production rate, however, is only part of the problem: current challenges include dealing with articulated data repositories where objects are connected by multiple relationships, managing complex processing pipelines where each step depends on a large number of configuration parameters and ensuring reproducibility, error control and usability by non-technical staff. Here we describe an automated infrastructure built to address the above issues in the context of the analysis of the data produced by the CRS4 next-generation sequencing facility. The system integrates open source tools, either written by us or publicly available, into a framework that can handle the whole data transformation process, from raw sequencer output to primary analysis results.","PeriodicalId":6469,"journal":{"name":"2014 International Conference on High Performance Computing & Simulation (HPCS)","volume":"21 1","pages":"600-607"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An automated infrastructure to support high-throughput bioinformatics\",\"authors\":\"G. Cuccuru, Simone Leo, L. Lianas, Michele Muggiri, Andrea Pinna, L. Pireddu, P. Uva, A. Angius, G. Fotia, G. Zanetti\",\"doi\":\"10.1109/HPCSim.2014.6903742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of domains affected by the big data phenomenon is constantly increasing, both in science and industry, with high-throughput DNA sequencers being among the most massive data producers. Building analysis frameworks that can keep up with such a high production rate, however, is only part of the problem: current challenges include dealing with articulated data repositories where objects are connected by multiple relationships, managing complex processing pipelines where each step depends on a large number of configuration parameters and ensuring reproducibility, error control and usability by non-technical staff. Here we describe an automated infrastructure built to address the above issues in the context of the analysis of the data produced by the CRS4 next-generation sequencing facility. The system integrates open source tools, either written by us or publicly available, into a framework that can handle the whole data transformation process, from raw sequencer output to primary analysis results.\",\"PeriodicalId\":6469,\"journal\":{\"name\":\"2014 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"21 1\",\"pages\":\"600-607\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2014.6903742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2014.6903742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An automated infrastructure to support high-throughput bioinformatics
The number of domains affected by the big data phenomenon is constantly increasing, both in science and industry, with high-throughput DNA sequencers being among the most massive data producers. Building analysis frameworks that can keep up with such a high production rate, however, is only part of the problem: current challenges include dealing with articulated data repositories where objects are connected by multiple relationships, managing complex processing pipelines where each step depends on a large number of configuration parameters and ensuring reproducibility, error control and usability by non-technical staff. Here we describe an automated infrastructure built to address the above issues in the context of the analysis of the data produced by the CRS4 next-generation sequencing facility. The system integrates open source tools, either written by us or publicly available, into a framework that can handle the whole data transformation process, from raw sequencer output to primary analysis results.