文本摘要的离散差分进化

Shweta Karwa, N. Chatterjee
{"title":"文本摘要的离散差分进化","authors":"Shweta Karwa, N. Chatterjee","doi":"10.1109/ICIT.2014.28","DOIUrl":null,"url":null,"abstract":"The paper proposes a modified version of Differential Evolution (DE) algorithm and optimization criterion function for extractive text summarization applications. Cosine Similarity measure has been used to cluster similar sentences based on a proposed criterion function designed for the text summarization problem, and important sentences from each cluster are selected to generate a summary of the document. The modified Differential Evolution model ensures integer state values and hence expedites the optimization as compared to conventional DE approach. Experiments showed a 95.5% improvement in time in the Discrete DE approach over the conventional DE approach, while the precision and recall of extracted summaries remained comparable in all cases.","PeriodicalId":6486,"journal":{"name":"2014 17th International Conference on Computer and Information Technology (ICCIT)","volume":"22 1","pages":"129-133"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Discrete Differential Evolution for Text Summarization\",\"authors\":\"Shweta Karwa, N. Chatterjee\",\"doi\":\"10.1109/ICIT.2014.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a modified version of Differential Evolution (DE) algorithm and optimization criterion function for extractive text summarization applications. Cosine Similarity measure has been used to cluster similar sentences based on a proposed criterion function designed for the text summarization problem, and important sentences from each cluster are selected to generate a summary of the document. The modified Differential Evolution model ensures integer state values and hence expedites the optimization as compared to conventional DE approach. Experiments showed a 95.5% improvement in time in the Discrete DE approach over the conventional DE approach, while the precision and recall of extracted summaries remained comparable in all cases.\",\"PeriodicalId\":6486,\"journal\":{\"name\":\"2014 17th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"22 1\",\"pages\":\"129-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 17th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2014.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 17th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种改进的差分进化(DE)算法和优化准则函数,用于抽取文本摘要应用。基于针对文本摘要问题提出的准则函数,使用余弦相似度度量对相似句子进行聚类,并从每个聚类中选择重要句子生成文档摘要。改进的差分进化模型保证了状态值的整数化,因此与传统的DE方法相比,可以加快优化速度。实验表明,离散DE方法比传统DE方法在时间上提高了95.5%,而提取摘要的精度和召回率在所有情况下都保持相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete Differential Evolution for Text Summarization
The paper proposes a modified version of Differential Evolution (DE) algorithm and optimization criterion function for extractive text summarization applications. Cosine Similarity measure has been used to cluster similar sentences based on a proposed criterion function designed for the text summarization problem, and important sentences from each cluster are selected to generate a summary of the document. The modified Differential Evolution model ensures integer state values and hence expedites the optimization as compared to conventional DE approach. Experiments showed a 95.5% improvement in time in the Discrete DE approach over the conventional DE approach, while the precision and recall of extracted summaries remained comparable in all cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android IR - Full-Text Search for Android Impurity Measurement in Selecting Decision Node Tree that Tolerate Noisy Cases A Comparative Study of IXP in Europe and US from a Complex Network Perspective Ensemble Features Selection Algorithm by Considering Features Ranking Priority User Independency of SSVEP Based Brain Computer Interface Using ANN Classifier: Statistical Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1