{"title":"对技能提升的建议:动作序列中的建模技能改进和项目难度","authors":"Kazutoshi Umemoto, T. Milo, M. Kitsuregawa","doi":"10.1109/ICDE48307.2020.00022","DOIUrl":null,"url":null,"abstract":"How can recommender systems help people improve their skills? As a first step toward recommendation for the upskilling of users, this paper addresses the problems of modeling the improvement of user skills and the difficulty of items in action sequences where users select items at different times. We propose a progression model that uses latent variables to learn the monotonically non-decreasing progression of user skills. Once this model is trained with the given sequence data, we leverage it to find a statistical solution to the item difficulty estimation problem, where we assume that users usually select items within their skill capacity. Experiments on five datasets (four from real domains, and one generated synthetically) revealed that (1) our model successfully captured the progression of domain-dependent skills; (2) multi-faceted item features helped to learn better models that aligned well with the ground-truth skill and difficulty levels in the synthetic dataset; (3) the learned models were practically useful to predict items and ratings in action sequences; and (4) exploiting the dependency structure of our skill model for parallel computation made the training process more efficient.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"19 1","pages":"169-180"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Toward Recommendation for Upskilling: Modeling Skill Improvement and Item Difficulty in Action Sequences\",\"authors\":\"Kazutoshi Umemoto, T. Milo, M. Kitsuregawa\",\"doi\":\"10.1109/ICDE48307.2020.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How can recommender systems help people improve their skills? As a first step toward recommendation for the upskilling of users, this paper addresses the problems of modeling the improvement of user skills and the difficulty of items in action sequences where users select items at different times. We propose a progression model that uses latent variables to learn the monotonically non-decreasing progression of user skills. Once this model is trained with the given sequence data, we leverage it to find a statistical solution to the item difficulty estimation problem, where we assume that users usually select items within their skill capacity. Experiments on five datasets (four from real domains, and one generated synthetically) revealed that (1) our model successfully captured the progression of domain-dependent skills; (2) multi-faceted item features helped to learn better models that aligned well with the ground-truth skill and difficulty levels in the synthetic dataset; (3) the learned models were practically useful to predict items and ratings in action sequences; and (4) exploiting the dependency structure of our skill model for parallel computation made the training process more efficient.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"19 1\",\"pages\":\"169-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward Recommendation for Upskilling: Modeling Skill Improvement and Item Difficulty in Action Sequences
How can recommender systems help people improve their skills? As a first step toward recommendation for the upskilling of users, this paper addresses the problems of modeling the improvement of user skills and the difficulty of items in action sequences where users select items at different times. We propose a progression model that uses latent variables to learn the monotonically non-decreasing progression of user skills. Once this model is trained with the given sequence data, we leverage it to find a statistical solution to the item difficulty estimation problem, where we assume that users usually select items within their skill capacity. Experiments on five datasets (four from real domains, and one generated synthetically) revealed that (1) our model successfully captured the progression of domain-dependent skills; (2) multi-faceted item features helped to learn better models that aligned well with the ground-truth skill and difficulty levels in the synthetic dataset; (3) the learned models were practically useful to predict items and ratings in action sequences; and (4) exploiting the dependency structure of our skill model for parallel computation made the training process more efficient.