推荐系统评价中假阳性指标中的人气偏差

Elisa Mena-Maldonado, Rocío Cañamares, P. Castells, Yongli Ren, M. Sanderson
{"title":"推荐系统评价中假阳性指标中的人气偏差","authors":"Elisa Mena-Maldonado, Rocío Cañamares, P. Castells, Yongli Ren, M. Sanderson","doi":"10.1145/3452740","DOIUrl":null,"url":null,"abstract":"We investigate the impact of popularity bias in false-positive metrics in the offline evaluation of recommender systems. Unlike their true-positive complements, false-positive metrics reward systems that minimize recommendations disliked by users. Our analysis is, to the best of our knowledge, the first to show that false-positive metrics tend to penalise popular items, the opposite behavior of true-positive metrics—causing a disagreement trend between both types of metrics in the presence of popularity biases. We present a theoretical analysis of the metrics that identifies the reason that the metrics disagree and determines rare situations where the metrics might agree—the key to the situation lies in the relationship between popularity and relevance distributions, in terms of their agreement and steepness—two fundamental concepts we formalize. We then examine three well-known datasets using multiple popular true- and false-positive metrics on 16 recommendation algorithms. Specific datasets are chosen to allow us to estimate both biased and unbiased metric values. The results of the empirical study confirm and illustrate our analytical findings. With the conditions of the disagreement of the two types of metrics established, we then determine under which circumstances true-positive or false-positive metrics should be used by researchers of offline evaluation in recommender systems.1","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"6 1","pages":"1 - 43"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Popularity Bias in False-positive Metrics for Recommender Systems Evaluation\",\"authors\":\"Elisa Mena-Maldonado, Rocío Cañamares, P. Castells, Yongli Ren, M. Sanderson\",\"doi\":\"10.1145/3452740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the impact of popularity bias in false-positive metrics in the offline evaluation of recommender systems. Unlike their true-positive complements, false-positive metrics reward systems that minimize recommendations disliked by users. Our analysis is, to the best of our knowledge, the first to show that false-positive metrics tend to penalise popular items, the opposite behavior of true-positive metrics—causing a disagreement trend between both types of metrics in the presence of popularity biases. We present a theoretical analysis of the metrics that identifies the reason that the metrics disagree and determines rare situations where the metrics might agree—the key to the situation lies in the relationship between popularity and relevance distributions, in terms of their agreement and steepness—two fundamental concepts we formalize. We then examine three well-known datasets using multiple popular true- and false-positive metrics on 16 recommendation algorithms. Specific datasets are chosen to allow us to estimate both biased and unbiased metric values. The results of the empirical study confirm and illustrate our analytical findings. With the conditions of the disagreement of the two types of metrics established, we then determine under which circumstances true-positive or false-positive metrics should be used by researchers of offline evaluation in recommender systems.1\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"6 1\",\"pages\":\"1 - 43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们研究了在推荐系统的离线评价中假阳性指标中的流行偏差的影响。与它们的真阳性补充不同,假阳性指标奖励系统将用户不喜欢的推荐最小化。据我们所知,我们的分析首次表明,假阳性指标倾向于惩罚受欢迎的项目,这与真阳性指标的行为相反——在受欢迎程度偏差的存在下,这两种指标之间出现了不一致的趋势。我们对指标进行了理论分析,确定了指标不一致的原因,并确定了指标可能一致的罕见情况——这种情况的关键在于流行度和相关性分布之间的关系,就它们的一致性和陡峭性而言——这是我们形式化的两个基本概念。然后,我们在16种推荐算法上使用多个流行的真阳性和假阳性指标来检查三个众所周知的数据集。选择特定的数据集,使我们能够估计有偏和无偏度量值。实证研究的结果证实并说明了我们的分析结果。在确定了两种度量标准不一致的条件下,我们确定了推荐系统中离线评价研究人员在哪些情况下应该使用真阳性或假阳性度量标准
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Popularity Bias in False-positive Metrics for Recommender Systems Evaluation
We investigate the impact of popularity bias in false-positive metrics in the offline evaluation of recommender systems. Unlike their true-positive complements, false-positive metrics reward systems that minimize recommendations disliked by users. Our analysis is, to the best of our knowledge, the first to show that false-positive metrics tend to penalise popular items, the opposite behavior of true-positive metrics—causing a disagreement trend between both types of metrics in the presence of popularity biases. We present a theoretical analysis of the metrics that identifies the reason that the metrics disagree and determines rare situations where the metrics might agree—the key to the situation lies in the relationship between popularity and relevance distributions, in terms of their agreement and steepness—two fundamental concepts we formalize. We then examine three well-known datasets using multiple popular true- and false-positive metrics on 16 recommendation algorithms. Specific datasets are chosen to allow us to estimate both biased and unbiased metric values. The results of the empirical study confirm and illustrate our analytical findings. With the conditions of the disagreement of the two types of metrics established, we then determine under which circumstances true-positive or false-positive metrics should be used by researchers of offline evaluation in recommender systems.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Graph Learning for Session-based Recommendation GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs Complex-valued Neural Network-based Quantum Language Models eFraudCom: An E-commerce Fraud Detection System via Competitive Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1