用靶向癌基因表达转基因小鼠下丘脑促性腺激素释放激素神经元的永生化

R. Weiner, S. Moenter
{"title":"用靶向癌基因表达转基因小鼠下丘脑促性腺激素释放激素神经元的永生化","authors":"R. Weiner, S. Moenter","doi":"10.1006/NCMN.1993.1053","DOIUrl":null,"url":null,"abstract":"Abstract Three clonal gonadotropin-releasing hormone (GnRH) neuronal cell lines were derived from a genetically induced tumor in transgenic mice. A transgene was constructed to target expression of simian virus 40 T antigen to GnRH neurons using the promoter/enhancer domains of the cell-specifically expressed GnRH gene. The resulting GT1 cells were characterized by morphology, the expression of neuron-specific genes, expression and processing of GnRH, pulsatile basal secretion of GnRH, release of GnRH in response to depolarization, and regulation of GnRH release by a variety of neurotransmitters and neuromodulators. By all of these criteria, GT1 cells are highly differentiated neuronal cell lines that provide valuable models for studying the cell biology of neuroendocrine cells.","PeriodicalId":100951,"journal":{"name":"Neuroprotocols","volume":"9 1","pages":"184-188"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immortalization of Hypothalamic Gonadotropin-Releasing Hormone Neurons Using Targeted Oncogene Expression in Transgenic Mice\",\"authors\":\"R. Weiner, S. Moenter\",\"doi\":\"10.1006/NCMN.1993.1053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Three clonal gonadotropin-releasing hormone (GnRH) neuronal cell lines were derived from a genetically induced tumor in transgenic mice. A transgene was constructed to target expression of simian virus 40 T antigen to GnRH neurons using the promoter/enhancer domains of the cell-specifically expressed GnRH gene. The resulting GT1 cells were characterized by morphology, the expression of neuron-specific genes, expression and processing of GnRH, pulsatile basal secretion of GnRH, release of GnRH in response to depolarization, and regulation of GnRH release by a variety of neurotransmitters and neuromodulators. By all of these criteria, GT1 cells are highly differentiated neuronal cell lines that provide valuable models for studying the cell biology of neuroendocrine cells.\",\"PeriodicalId\":100951,\"journal\":{\"name\":\"Neuroprotocols\",\"volume\":\"9 1\",\"pages\":\"184-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroprotocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1006/NCMN.1993.1053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroprotocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/NCMN.1993.1053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要从转基因小鼠的肿瘤中获得了3株克隆的促性腺激素释放激素(GnRH)神经元细胞系。利用细胞特异性表达的GnRH基因的启动子/增强子结构域,构建了一种将猴病毒40t抗原靶向表达到GnRH神经元的转基因。所得到的GT1细胞具有形态学、神经元特异性基因的表达、GnRH的表达和加工、GnRH的脉动性基底分泌、GnRH的去极化释放以及多种神经递质和神经调节剂对GnRH释放的调节等特征。通过这些标准,GT1细胞是高度分化的神经细胞系,为研究神经内分泌细胞生物学提供了有价值的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Immortalization of Hypothalamic Gonadotropin-Releasing Hormone Neurons Using Targeted Oncogene Expression in Transgenic Mice
Abstract Three clonal gonadotropin-releasing hormone (GnRH) neuronal cell lines were derived from a genetically induced tumor in transgenic mice. A transgene was constructed to target expression of simian virus 40 T antigen to GnRH neurons using the promoter/enhancer domains of the cell-specifically expressed GnRH gene. The resulting GT1 cells were characterized by morphology, the expression of neuron-specific genes, expression and processing of GnRH, pulsatile basal secretion of GnRH, release of GnRH in response to depolarization, and regulation of GnRH release by a variety of neurotransmitters and neuromodulators. By all of these criteria, GT1 cells are highly differentiated neuronal cell lines that provide valuable models for studying the cell biology of neuroendocrine cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Use of Antisense Oligodeoxynucleotides in the Study of Neuroendocrine Aging Delivery of Peptides into the Central Nervous System by Molecular Packaging and Sequential Metabolism as a Method of Altering Neuropeptide Activity during Aging Author Index for Volume 4 Electron Microscopic Methods for Determining Changes in the Density of Synaptic Input to Neurons in the Aging Brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1