A. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez Maselco, Antoni Karpiński
{"title":"使用基于转换的编译器测试,测试用例减少和重复数据删除几乎是免费的","authors":"A. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez Maselco, Antoni Karpiński","doi":"10.1145/3453483.3454092","DOIUrl":null,"url":null,"abstract":"Recent transformation-based approaches to compiler testing look for mismatches between the results of pairs of equivalent programs, where one program is derived from the other by randomly applying semantics-preserving transformations. We present a formulation of transformation-based compiler testing that provides effective test-case reduction almost for free: if transformations are designed to be as small and independent as possible, standard delta debugging can be used to shrink a bug-inducing transformation sequence to a smaller subsequence that still triggers the bug. The bug can then be reported as a delta between an original and minimally-transformed program. Minimized transformation sequences can also be used to heuristically deduplicate a set of bug-inducing tests, recommending manual investigation of those that involve disparate types of transformations and thus may have different root causes. We demonstrate the effectiveness of our approach via a new tool, spirv-fuzz, the first compiler-testing tool for the SPIR-V intermediate representation that underpins the Vulkan GPU programming model.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Test-case reduction and deduplication almost for free with transformation-based compiler testing\",\"authors\":\"A. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez Maselco, Antoni Karpiński\",\"doi\":\"10.1145/3453483.3454092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent transformation-based approaches to compiler testing look for mismatches between the results of pairs of equivalent programs, where one program is derived from the other by randomly applying semantics-preserving transformations. We present a formulation of transformation-based compiler testing that provides effective test-case reduction almost for free: if transformations are designed to be as small and independent as possible, standard delta debugging can be used to shrink a bug-inducing transformation sequence to a smaller subsequence that still triggers the bug. The bug can then be reported as a delta between an original and minimally-transformed program. Minimized transformation sequences can also be used to heuristically deduplicate a set of bug-inducing tests, recommending manual investigation of those that involve disparate types of transformations and thus may have different root causes. We demonstrate the effectiveness of our approach via a new tool, spirv-fuzz, the first compiler-testing tool for the SPIR-V intermediate representation that underpins the Vulkan GPU programming model.\",\"PeriodicalId\":20557,\"journal\":{\"name\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3453483.3454092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Test-case reduction and deduplication almost for free with transformation-based compiler testing
Recent transformation-based approaches to compiler testing look for mismatches between the results of pairs of equivalent programs, where one program is derived from the other by randomly applying semantics-preserving transformations. We present a formulation of transformation-based compiler testing that provides effective test-case reduction almost for free: if transformations are designed to be as small and independent as possible, standard delta debugging can be used to shrink a bug-inducing transformation sequence to a smaller subsequence that still triggers the bug. The bug can then be reported as a delta between an original and minimally-transformed program. Minimized transformation sequences can also be used to heuristically deduplicate a set of bug-inducing tests, recommending manual investigation of those that involve disparate types of transformations and thus may have different root causes. We demonstrate the effectiveness of our approach via a new tool, spirv-fuzz, the first compiler-testing tool for the SPIR-V intermediate representation that underpins the Vulkan GPU programming model.