迭代数据驱动的冠状血管标记

Tsaipei Wang
{"title":"迭代数据驱动的冠状血管标记","authors":"Tsaipei Wang","doi":"10.1109/MLSP.2017.8168190","DOIUrl":null,"url":null,"abstract":"This paper describes an iterative data-driven algorithm for automatically labeling coronary vessel segments in MDCT images. Such techniques are useful for effective presentation and communication of findings on coronary vessel pathology by physicians and computer-assisted diagnosis systems. The experiments are done on the 18 sets of coronary vessel data in the Rotterdam Coronary Artery Algorithm Evaluation Framework that contain segment labeling by medical experts. The performance of our algorithm show both good accuracy and efficiency compared to previous works on this task.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"140 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative data-driven coronary vessel labeling\",\"authors\":\"Tsaipei Wang\",\"doi\":\"10.1109/MLSP.2017.8168190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an iterative data-driven algorithm for automatically labeling coronary vessel segments in MDCT images. Such techniques are useful for effective presentation and communication of findings on coronary vessel pathology by physicians and computer-assisted diagnosis systems. The experiments are done on the 18 sets of coronary vessel data in the Rotterdam Coronary Artery Algorithm Evaluation Framework that contain segment labeling by medical experts. The performance of our algorithm show both good accuracy and efficiency compared to previous works on this task.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"140 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种迭代数据驱动算法,用于自动标记MDCT图像中的冠状血管片段。这些技术有助于医生和计算机辅助诊断系统有效地展示和交流冠状动脉病理结果。实验是在鹿特丹冠状动脉算法评估框架中包含医学专家分段标记的18组冠状动脉数据上进行的。与以往的工作相比,我们的算法具有良好的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative data-driven coronary vessel labeling
This paper describes an iterative data-driven algorithm for automatically labeling coronary vessel segments in MDCT images. Such techniques are useful for effective presentation and communication of findings on coronary vessel pathology by physicians and computer-assisted diagnosis systems. The experiments are done on the 18 sets of coronary vessel data in the Rotterdam Coronary Artery Algorithm Evaluation Framework that contain segment labeling by medical experts. The performance of our algorithm show both good accuracy and efficiency compared to previous works on this task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1