掺钼钛酸锶钡纳米粉体的微观结构和介电性能

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Technology Pub Date : 2022-11-24 DOI:10.1080/10667857.2022.2151685
Kiflom Gebremedhn Kelele, H. Murthy, R. Balachandran, Aschalew Tadesse, K. Tan
{"title":"掺钼钛酸锶钡纳米粉体的微观结构和介电性能","authors":"Kiflom Gebremedhn Kelele, H. Murthy, R. Balachandran, Aschalew Tadesse, K. Tan","doi":"10.1080/10667857.2022.2151685","DOIUrl":null,"url":null,"abstract":"ABSTRACT The goal of this research was to examine how the dielectric properties of barium strontium titanate (BST) differ from those of BST that has been doped with molybdenum. The slow injection sol-gel technique was used. The addition of Mo6+ ions into the lattice of BST caused reduction of the mean crystallite sizes of BST, from 19.35 nm to 17.84 nm. Similarly, the mean particle size decreased from 26.02 nm all the way to 18.58 nm following the addition of Mo within the BST structure. Ultimately, the dielectric constant of BST was elevated with a maximum value of 946.3 at 1 MHz as compared to the value of 233.8 for BST. After Mo was added to BST, a reduction in dielectric loss (0.15576 to 0.0356) was also attained. Because of this, the Mo dopant in BST has significantly altered its microstructural and dielectric properties, making it suitable for multiple applications.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"137 1","pages":"3241 - 3246"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microstructural and dielectric properties of Mo-doped barium strontium titanate nanopowders\",\"authors\":\"Kiflom Gebremedhn Kelele, H. Murthy, R. Balachandran, Aschalew Tadesse, K. Tan\",\"doi\":\"10.1080/10667857.2022.2151685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The goal of this research was to examine how the dielectric properties of barium strontium titanate (BST) differ from those of BST that has been doped with molybdenum. The slow injection sol-gel technique was used. The addition of Mo6+ ions into the lattice of BST caused reduction of the mean crystallite sizes of BST, from 19.35 nm to 17.84 nm. Similarly, the mean particle size decreased from 26.02 nm all the way to 18.58 nm following the addition of Mo within the BST structure. Ultimately, the dielectric constant of BST was elevated with a maximum value of 946.3 at 1 MHz as compared to the value of 233.8 for BST. After Mo was added to BST, a reduction in dielectric loss (0.15576 to 0.0356) was also attained. Because of this, the Mo dopant in BST has significantly altered its microstructural and dielectric properties, making it suitable for multiple applications.\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"137 1\",\"pages\":\"3241 - 3246\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2022.2151685\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2022.2151685","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要:本研究的目的是研究钛酸锶钡(BST)的介电性能与掺杂钼的BST的介电性能有何不同。采用慢速注射溶胶-凝胶技术。在BST晶格中加入Mo6+离子使BST的平均晶粒尺寸从19.35 nm减小到17.84 nm。同样,在BST结构中加入Mo后,平均粒径从26.02 nm一路减小到18.58 nm。最终,BST的介电常数升高,在1 MHz时最大值为946.3,而BST的介电常数为233.8。在BST中加入Mo后,介质损耗也降低了(0.15576 ~ 0.0356)。因此,BST中的Mo掺杂剂显著改变了其微结构和介电性能,使其适合多种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructural and dielectric properties of Mo-doped barium strontium titanate nanopowders
ABSTRACT The goal of this research was to examine how the dielectric properties of barium strontium titanate (BST) differ from those of BST that has been doped with molybdenum. The slow injection sol-gel technique was used. The addition of Mo6+ ions into the lattice of BST caused reduction of the mean crystallite sizes of BST, from 19.35 nm to 17.84 nm. Similarly, the mean particle size decreased from 26.02 nm all the way to 18.58 nm following the addition of Mo within the BST structure. Ultimately, the dielectric constant of BST was elevated with a maximum value of 946.3 at 1 MHz as compared to the value of 233.8 for BST. After Mo was added to BST, a reduction in dielectric loss (0.15576 to 0.0356) was also attained. Because of this, the Mo dopant in BST has significantly altered its microstructural and dielectric properties, making it suitable for multiple applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Technology
Materials Technology 工程技术-材料科学:综合
CiteScore
6.00
自引率
9.70%
发文量
105
审稿时长
8.7 months
期刊介绍: Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.
期刊最新文献
Fabrication and development of biogenic selenium nanoparticles incorporated alginate hydrogel wound care material: a pre-clinical study Biopolymer-coated magnesium-alloy-based multi-functional bio-nanocomposite scaffolds Enhancing anticancer efficacy: xovoltib-loaded chitosan-tripolyphosphate nanoparticles for targeted drug delivery against MCF-7 breast cancer cells One Pot Synthesis, characterization, morphology and optical profilometry properties of La-doped and La–Ag-doped cobalt oxide nanoparticles Supercritical hydrothermal synthesis of ultra-fine Cu powders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1