{"title":"实现弹簧加载倒立摆模型的双关节驱动双连杆机械臂腿空间观测器","authors":"Y. Kimura, Sehoon Oh, Y. Hori","doi":"10.1109/AMC.2012.6197054","DOIUrl":null,"url":null,"abstract":"This paper proposes kinematics and a control algorithm to control a two-link manipulator to simulate a spring loaded inverted pendulum (SLIP). End-effector kinematics is derived in the reference frame that is defined along the axis that connects the first joint and the end-effector. The derivation of this kinematics reveals that a biarticular actuator is suitable for this kinematics. Based on this kinematics, a disturbance observer is designed in the same reference frame. This disturbance observer removes the unnecessary inertia coupling without calculation of Jacobian matrix.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Leg space observer on biarticular actuated two-link manipulator for realizing spring loaded inverted pendulum model\",\"authors\":\"Y. Kimura, Sehoon Oh, Y. Hori\",\"doi\":\"10.1109/AMC.2012.6197054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes kinematics and a control algorithm to control a two-link manipulator to simulate a spring loaded inverted pendulum (SLIP). End-effector kinematics is derived in the reference frame that is defined along the axis that connects the first joint and the end-effector. The derivation of this kinematics reveals that a biarticular actuator is suitable for this kinematics. Based on this kinematics, a disturbance observer is designed in the same reference frame. This disturbance observer removes the unnecessary inertia coupling without calculation of Jacobian matrix.\",\"PeriodicalId\":6439,\"journal\":{\"name\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"16 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2012.6197054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2012.6197054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leg space observer on biarticular actuated two-link manipulator for realizing spring loaded inverted pendulum model
This paper proposes kinematics and a control algorithm to control a two-link manipulator to simulate a spring loaded inverted pendulum (SLIP). End-effector kinematics is derived in the reference frame that is defined along the axis that connects the first joint and the end-effector. The derivation of this kinematics reveals that a biarticular actuator is suitable for this kinematics. Based on this kinematics, a disturbance observer is designed in the same reference frame. This disturbance observer removes the unnecessary inertia coupling without calculation of Jacobian matrix.