{"title":"随机供给人群车辆和时间窗下的车辆路径","authors":"Fabian Torres, M. Gendreau, W. Rei","doi":"10.1287/trsc.2021.1101","DOIUrl":null,"url":null,"abstract":"The growth of e-commerce has increased demand for last-mile deliveries, increasing the level of congestion in the existing transportation infrastructure in urban areas. Crowdsourcing deliveries can provide the additional capacity needed to meet the growing demand in a cost-effective way. We introduce a setting where a crowd-shipping platform sells heterogeneous products of different sizes from a central depot. Items sold vary from groceries to electronics. Some items must be delivered within a time window, whereas others need a customer signature. Furthermore, customer presence is not guaranteed, and some deliveries may need to be returned to the depot. Delivery requests are fulfilled by a fleet of professional drivers and a pool of crowd drivers. We present a crowd-shipping platform that standardizes crowd drivers’ capacities and compensates them to return undelivered packages back to the depot. We formulate a two-stage stochastic model, and we propose a branch and price algorithm to solve the problem exactly and a column generation heuristic to solve larger problems quickly. We further develop an analytical method to calculate upper bounds on the supply of vehicles and an innovative cohesive pricing problem to generate columns for the pool of crowd drivers. Computational experiments are carried out on modified Solomon instances with a pool of 100 crowd vehicles. The branch and price algorithm is able to solve instances of up to 100 customers. We show that the value of the stochastic solution can be as high as 18% when compared with the solution obtained from a deterministic simplification of the model. Significant cost reductions of up to 28% are achieved by implementing crowd drivers with low compensations or higher capacities. Finally, we evaluate what happens when crowd drivers are given the autonomy to select routes based on rational and irrational behavior. There is no cost increase when crowd drivers are rational and select routes that have a higher compensation first. However, when crowd drivers are irrational and select routes randomly, the cost can increase up to 4.2% for some instances.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"461 1","pages":"631-653"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Vehicle Routing with Stochastic Supply of Crowd Vehicles and Time Windows\",\"authors\":\"Fabian Torres, M. Gendreau, W. Rei\",\"doi\":\"10.1287/trsc.2021.1101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of e-commerce has increased demand for last-mile deliveries, increasing the level of congestion in the existing transportation infrastructure in urban areas. Crowdsourcing deliveries can provide the additional capacity needed to meet the growing demand in a cost-effective way. We introduce a setting where a crowd-shipping platform sells heterogeneous products of different sizes from a central depot. Items sold vary from groceries to electronics. Some items must be delivered within a time window, whereas others need a customer signature. Furthermore, customer presence is not guaranteed, and some deliveries may need to be returned to the depot. Delivery requests are fulfilled by a fleet of professional drivers and a pool of crowd drivers. We present a crowd-shipping platform that standardizes crowd drivers’ capacities and compensates them to return undelivered packages back to the depot. We formulate a two-stage stochastic model, and we propose a branch and price algorithm to solve the problem exactly and a column generation heuristic to solve larger problems quickly. We further develop an analytical method to calculate upper bounds on the supply of vehicles and an innovative cohesive pricing problem to generate columns for the pool of crowd drivers. Computational experiments are carried out on modified Solomon instances with a pool of 100 crowd vehicles. The branch and price algorithm is able to solve instances of up to 100 customers. We show that the value of the stochastic solution can be as high as 18% when compared with the solution obtained from a deterministic simplification of the model. Significant cost reductions of up to 28% are achieved by implementing crowd drivers with low compensations or higher capacities. Finally, we evaluate what happens when crowd drivers are given the autonomy to select routes based on rational and irrational behavior. There is no cost increase when crowd drivers are rational and select routes that have a higher compensation first. However, when crowd drivers are irrational and select routes randomly, the cost can increase up to 4.2% for some instances.\",\"PeriodicalId\":23247,\"journal\":{\"name\":\"Transp. Sci.\",\"volume\":\"461 1\",\"pages\":\"631-653\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transp. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2021.1101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle Routing with Stochastic Supply of Crowd Vehicles and Time Windows
The growth of e-commerce has increased demand for last-mile deliveries, increasing the level of congestion in the existing transportation infrastructure in urban areas. Crowdsourcing deliveries can provide the additional capacity needed to meet the growing demand in a cost-effective way. We introduce a setting where a crowd-shipping platform sells heterogeneous products of different sizes from a central depot. Items sold vary from groceries to electronics. Some items must be delivered within a time window, whereas others need a customer signature. Furthermore, customer presence is not guaranteed, and some deliveries may need to be returned to the depot. Delivery requests are fulfilled by a fleet of professional drivers and a pool of crowd drivers. We present a crowd-shipping platform that standardizes crowd drivers’ capacities and compensates them to return undelivered packages back to the depot. We formulate a two-stage stochastic model, and we propose a branch and price algorithm to solve the problem exactly and a column generation heuristic to solve larger problems quickly. We further develop an analytical method to calculate upper bounds on the supply of vehicles and an innovative cohesive pricing problem to generate columns for the pool of crowd drivers. Computational experiments are carried out on modified Solomon instances with a pool of 100 crowd vehicles. The branch and price algorithm is able to solve instances of up to 100 customers. We show that the value of the stochastic solution can be as high as 18% when compared with the solution obtained from a deterministic simplification of the model. Significant cost reductions of up to 28% are achieved by implementing crowd drivers with low compensations or higher capacities. Finally, we evaluate what happens when crowd drivers are given the autonomy to select routes based on rational and irrational behavior. There is no cost increase when crowd drivers are rational and select routes that have a higher compensation first. However, when crowd drivers are irrational and select routes randomly, the cost can increase up to 4.2% for some instances.