{"title":"在图中嵌入对称的反射对称检测","authors":"R. Nagar, S. Raman","doi":"10.1109/ICASSP.2019.8682412","DOIUrl":null,"url":null,"abstract":"Reflection symmetry is ubiquitous in nature and plays an important role in object detection and recognition tasks. Most of the existing methods for symmetry detection extract and describe each keypoint using a descriptor and a mirrored descriptor. Two keypoints are said to be mirror symmetric key-points if the original descriptor of one keypoint and the mirrored descriptor of the other keypoint are similar. However, these methods suffer from the following issue. The background pixels around the mirror symmetric pixels lying on the boundary of an object can be different. Therefore, their descriptors can be different. However, the boundary of a symmetric object is a major component of global reflection symmetry. We exploit the estimated boundary of the object and describe a boundary pixel using only the estimated normal of the boundary segment around the pixel. We embed the symmetry axes in a graph as cliques to robustly detect the symmetry axes. We show that this approach achieves state-of-the-art results in a standard dataset.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"4012 2 1","pages":"2147-2151"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reflection Symmetry Detection by Embedding Symmetry in a Graph\",\"authors\":\"R. Nagar, S. Raman\",\"doi\":\"10.1109/ICASSP.2019.8682412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reflection symmetry is ubiquitous in nature and plays an important role in object detection and recognition tasks. Most of the existing methods for symmetry detection extract and describe each keypoint using a descriptor and a mirrored descriptor. Two keypoints are said to be mirror symmetric key-points if the original descriptor of one keypoint and the mirrored descriptor of the other keypoint are similar. However, these methods suffer from the following issue. The background pixels around the mirror symmetric pixels lying on the boundary of an object can be different. Therefore, their descriptors can be different. However, the boundary of a symmetric object is a major component of global reflection symmetry. We exploit the estimated boundary of the object and describe a boundary pixel using only the estimated normal of the boundary segment around the pixel. We embed the symmetry axes in a graph as cliques to robustly detect the symmetry axes. We show that this approach achieves state-of-the-art results in a standard dataset.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"4012 2 1\",\"pages\":\"2147-2151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reflection Symmetry Detection by Embedding Symmetry in a Graph
Reflection symmetry is ubiquitous in nature and plays an important role in object detection and recognition tasks. Most of the existing methods for symmetry detection extract and describe each keypoint using a descriptor and a mirrored descriptor. Two keypoints are said to be mirror symmetric key-points if the original descriptor of one keypoint and the mirrored descriptor of the other keypoint are similar. However, these methods suffer from the following issue. The background pixels around the mirror symmetric pixels lying on the boundary of an object can be different. Therefore, their descriptors can be different. However, the boundary of a symmetric object is a major component of global reflection symmetry. We exploit the estimated boundary of the object and describe a boundary pixel using only the estimated normal of the boundary segment around the pixel. We embed the symmetry axes in a graph as cliques to robustly detect the symmetry axes. We show that this approach achieves state-of-the-art results in a standard dataset.