基于有限局部数据的人工神经网络的智能空间插值霜冻预测方法

Ian Zhou, J. Lipman, M. Abolhasan, N. Shariati
{"title":"基于有限局部数据的人工神经网络的智能空间插值霜冻预测方法","authors":"Ian Zhou, J. Lipman, M. Abolhasan, N. Shariati","doi":"10.48550/arXiv.2204.08465","DOIUrl":null,"url":null,"abstract":"The weather phenomenon of frost poses great threats to agriculture. As recent frost prediction methods are based on on-site historical data and sensors, extra development and deployment time are required for data collection in any new site. The aim of this article is to eliminate the dependency on on-site historical data and sensors for frost prediction methods. In this article, a frost prediction method based on spatial interpolation is proposed. The models use climate data from existing weather stations, digital elevation models surveys, and normalized difference vegetation index data to estimate a target site's next hour minimum temperature. The proposed method utilizes ensemble learning to increase the model accuracy. Climate datasets are obtained from 75 weather stations across New South Wales and Australian Capital Territory areas of Australia. The results show that the proposed method reached a detection rate up to 92.55%.","PeriodicalId":12033,"journal":{"name":"Environ. Model. Softw.","volume":"6 1","pages":"105724"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Spatial Interpolation-based Frost Prediction Methodology using Artificial Neural Networks with Limited Local Data\",\"authors\":\"Ian Zhou, J. Lipman, M. Abolhasan, N. Shariati\",\"doi\":\"10.48550/arXiv.2204.08465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The weather phenomenon of frost poses great threats to agriculture. As recent frost prediction methods are based on on-site historical data and sensors, extra development and deployment time are required for data collection in any new site. The aim of this article is to eliminate the dependency on on-site historical data and sensors for frost prediction methods. In this article, a frost prediction method based on spatial interpolation is proposed. The models use climate data from existing weather stations, digital elevation models surveys, and normalized difference vegetation index data to estimate a target site's next hour minimum temperature. The proposed method utilizes ensemble learning to increase the model accuracy. Climate datasets are obtained from 75 weather stations across New South Wales and Australian Capital Territory areas of Australia. The results show that the proposed method reached a detection rate up to 92.55%.\",\"PeriodicalId\":12033,\"journal\":{\"name\":\"Environ. Model. Softw.\",\"volume\":\"6 1\",\"pages\":\"105724\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environ. Model. Softw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.08465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environ. Model. Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

霜冻的天气现象对农业造成很大威胁。由于最近的霜冻预测方法是基于现场历史数据和传感器,因此在任何新站点收集数据都需要额外的开发和部署时间。本文的目的是消除对现场历史数据和传感器霜冻预测方法的依赖。提出了一种基于空间插值的霜冻预报方法。这些模型使用来自现有气象站的气候数据、数字高程模型调查和归一化植被指数差异数据来估计目标地点下一小时的最低温度。该方法利用集成学习来提高模型的精度。气候数据集来自澳大利亚新南威尔士州和澳大利亚首都直辖区的75个气象站。结果表明,该方法的检测率高达92.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Spatial Interpolation-based Frost Prediction Methodology using Artificial Neural Networks with Limited Local Data
The weather phenomenon of frost poses great threats to agriculture. As recent frost prediction methods are based on on-site historical data and sensors, extra development and deployment time are required for data collection in any new site. The aim of this article is to eliminate the dependency on on-site historical data and sensors for frost prediction methods. In this article, a frost prediction method based on spatial interpolation is proposed. The models use climate data from existing weather stations, digital elevation models surveys, and normalized difference vegetation index data to estimate a target site's next hour minimum temperature. The proposed method utilizes ensemble learning to increase the model accuracy. Climate datasets are obtained from 75 weather stations across New South Wales and Australian Capital Territory areas of Australia. The results show that the proposed method reached a detection rate up to 92.55%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of deterministic and probabilistic precipitation nowcasting techniques over New York metropolitan area Analysis and comparison of coupled and uncoupled simulations with the COAWST model during the Gloria Storm (January 2020) in the northwestern Mediterranean Sea Bayesian analysis of high-frequency water temperature time series through Markov switching autoregressive models Inversion and forward estimation with process-based models: An investigation into cost functions, uncertainty-based weights and model-data fusion An extensible, plugin-based tool for modeling flow and reactive transport in water systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1