Dok-7的羧基末端区域在肌肉特异性受体激酶MuSK的激活和神经肌肉突触的形成中起关键作用,但不是必需的

Ryo Ueta, T. Tezuka, Yosuke Izawa, Sadanori Miyoshi, S. Nagatoishi, K. Tsumoto, Y. Yamanashi
{"title":"Dok-7的羧基末端区域在肌肉特异性受体激酶MuSK的激活和神经肌肉突触的形成中起关键作用,但不是必需的","authors":"Ryo Ueta, T. Tezuka, Yosuke Izawa, Sadanori Miyoshi, S. Nagatoishi, K. Tsumoto, Y. Yamanashi","doi":"10.1093/jb/mvw073","DOIUrl":null,"url":null,"abstract":"As the synapse between a motor neuron and skeletal muscle, the neuromuscular junction (NMJ) is required for muscle contraction. The formation and maintenance of NMJs are controlled by the muscle-specific receptor kinase MuSK. Dok-7 is the essential cytoplasmic activator of MuSK, and indeed mice lacking Dok-7 form no NMJs. Moreover, DOK7 gene mutations underlie DOK7 myasthenia, an NMJ synaptopathy. Previously, we failed to detect MuSK activation in myotubes by Dok-7 mutated in the N-terminal pleckstrin homology (PH) or phosphotyrosine binding (PTB) domain or that lacked the C-terminal region (Dok-7-ΔC). Here, we found by quantitative analysis that Dok-7-ΔC marginally, but significantly, activated MuSK in myotubes, unlike the PH- or PTB-mutant. Purified, recombinant Dok-7-ΔC, but not other mutants, also showed marginal ability to activate MuSK's cytoplasmic portion, carrying the kinase domain. Consistently, forced expression of Dok-7-ΔC rescued Dok-7-deficient mice from neonatal lethality caused by the lack of NMJs, indicating restored MuSK activation and NMJ formation. However, these mice showed only marginal activation of MuSK and died by 3 weeks of age apparently due to an abnormally small number and size of NMJs. Thus, Dok-7's C-terminal region plays a key, but not fully essential, role in MuSK activation and NMJ formation.","PeriodicalId":22605,"journal":{"name":"The Journal of Biochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The carboxyl-terminal region of Dok-7 plays a key, but not essential, role in activation of muscle-specific receptor kinase MuSK and neuromuscular synapse formation\",\"authors\":\"Ryo Ueta, T. Tezuka, Yosuke Izawa, Sadanori Miyoshi, S. Nagatoishi, K. Tsumoto, Y. Yamanashi\",\"doi\":\"10.1093/jb/mvw073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the synapse between a motor neuron and skeletal muscle, the neuromuscular junction (NMJ) is required for muscle contraction. The formation and maintenance of NMJs are controlled by the muscle-specific receptor kinase MuSK. Dok-7 is the essential cytoplasmic activator of MuSK, and indeed mice lacking Dok-7 form no NMJs. Moreover, DOK7 gene mutations underlie DOK7 myasthenia, an NMJ synaptopathy. Previously, we failed to detect MuSK activation in myotubes by Dok-7 mutated in the N-terminal pleckstrin homology (PH) or phosphotyrosine binding (PTB) domain or that lacked the C-terminal region (Dok-7-ΔC). Here, we found by quantitative analysis that Dok-7-ΔC marginally, but significantly, activated MuSK in myotubes, unlike the PH- or PTB-mutant. Purified, recombinant Dok-7-ΔC, but not other mutants, also showed marginal ability to activate MuSK's cytoplasmic portion, carrying the kinase domain. Consistently, forced expression of Dok-7-ΔC rescued Dok-7-deficient mice from neonatal lethality caused by the lack of NMJs, indicating restored MuSK activation and NMJ formation. However, these mice showed only marginal activation of MuSK and died by 3 weeks of age apparently due to an abnormally small number and size of NMJs. Thus, Dok-7's C-terminal region plays a key, but not fully essential, role in MuSK activation and NMJ formation.\",\"PeriodicalId\":22605,\"journal\":{\"name\":\"The Journal of Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvw073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jb/mvw073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

作为运动神经元和骨骼肌之间的突触,神经肌肉接头(NMJ)是肌肉收缩所必需的。NMJs的形成和维持是由肌肉特异性受体激酶MuSK控制的。Dok-7是MuSK必不可少的细胞质激活剂,缺乏Dok-7的小鼠确实不会形成NMJs。此外,DOK7基因突变是一种NMJ突触病——DOK7肌无力的基础。先前,我们未能检测到肌管中n端pleckstrin同源性(PH)或磷酸酪氨酸结合(PTB)结构域突变的Dok-7或缺少c端区域的Dok-7 (-ΔC)的MuSK激活。在这里,我们通过定量分析发现,与PH-或ptb突变体不同,Dok-7-ΔC略微但显著地激活了肌管中的MuSK。纯化的重组Dok-7-ΔC,而不是其他突变体,也显示出激活MuSK的细胞质部分的边际能力,携带激酶结构域。与此一致的是,强制表达Dok-7-ΔC使Dok-7缺陷小鼠免于因缺乏NMJs而导致的新生儿死亡,表明MuSK激活和NMJ形成得以恢复。然而,这些小鼠仅显示出MuSK的边缘激活,并在3周龄时死亡,这显然是由于NMJs的数量和大小异常少。因此,Dok-7的c端区域在MuSK激活和NMJ形成中起关键作用,但不是完全必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The carboxyl-terminal region of Dok-7 plays a key, but not essential, role in activation of muscle-specific receptor kinase MuSK and neuromuscular synapse formation
As the synapse between a motor neuron and skeletal muscle, the neuromuscular junction (NMJ) is required for muscle contraction. The formation and maintenance of NMJs are controlled by the muscle-specific receptor kinase MuSK. Dok-7 is the essential cytoplasmic activator of MuSK, and indeed mice lacking Dok-7 form no NMJs. Moreover, DOK7 gene mutations underlie DOK7 myasthenia, an NMJ synaptopathy. Previously, we failed to detect MuSK activation in myotubes by Dok-7 mutated in the N-terminal pleckstrin homology (PH) or phosphotyrosine binding (PTB) domain or that lacked the C-terminal region (Dok-7-ΔC). Here, we found by quantitative analysis that Dok-7-ΔC marginally, but significantly, activated MuSK in myotubes, unlike the PH- or PTB-mutant. Purified, recombinant Dok-7-ΔC, but not other mutants, also showed marginal ability to activate MuSK's cytoplasmic portion, carrying the kinase domain. Consistently, forced expression of Dok-7-ΔC rescued Dok-7-deficient mice from neonatal lethality caused by the lack of NMJs, indicating restored MuSK activation and NMJ formation. However, these mice showed only marginal activation of MuSK and died by 3 weeks of age apparently due to an abnormally small number and size of NMJs. Thus, Dok-7's C-terminal region plays a key, but not fully essential, role in MuSK activation and NMJ formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New insights into the regulation and roles of phosphatidylinositol 3,4-bisphosphate The NRF2 inducer CDDO-2P-Im provokes a reduction in amyloid β levels in Alzheimer’s disease model mice Cancer-associated SF3B1 Mutations Inhibit mRNA Nuclear Export by Disrupting SF3B1–THOC5 Interactions Mtc6/Ehg2 is a novel endoplasmic reticulum-resident glycoprotein essential for high-pressure tolerance Evaluation of the cyclic single-chain Fv antibody derived from nivolumab by biophysical analyses and in vitro cell-based bioassay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1