基于神经模糊的在线社交网络谣言检测方法

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2020-01-01 DOI:10.4018/ijwsr.2020010104
Santhoshkumar Srinivasan, Yuhong Yan, Yong-bo Liang, Abhijeet Roy, B. Kumara, Incheon Paik, Wuhui Chen, Frederic Montagut, R. Molva, S. Golega, Shuai Zhao, Bo Cheng, Le Yu, Shou-lu Hou, Yang Zhang
{"title":"基于神经模糊的在线社交网络谣言检测方法","authors":"Santhoshkumar Srinivasan, Yuhong Yan, Yong-bo Liang, Abhijeet Roy, B. Kumara, Incheon Paik, Wuhui Chen, Frederic Montagut, R. Molva, S. Golega, Shuai Zhao, Bo Cheng, Le Yu, Shou-lu Hou, Yang Zhang","doi":"10.4018/ijwsr.2020010104","DOIUrl":null,"url":null,"abstract":"Along with true information, rumors spread in online social networks (OSN) on an unprecedented scale. In recent days, rumor identification gains more interest among the researchers. Finding rumors also poses other critical challenges like noisy and imprecise input data, data sparsity, and unclear interpretations of the output. To address these issues, we propose a neuro-fuzzy classification approach called the neuro-fuzzy rumor detector (NFRD) to automatically identify the rumors in OSNs. NFRD quickly transforms the input to fuzzy rules which classify the rumor. Neural networks handle larger input data. Fuzzy systems are better in handling uncertainty and imprecision in input data by producing fuzzy rules that effectively eliminate the unclear inputs. NFRD also considers the semantic aspects of information to ensure better classification. The neuro-fuzzy approach addresses the most common problems such as uncertainty elimination, noise reduction, and quicker generalization. Experimental results show the proposed approach performs well against state-of-the-art rumor detecting techniques.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"54 1","pages":"64-82"},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Neuro-Fuzzy Approach to Detect Rumors in Online Social Networks\",\"authors\":\"Santhoshkumar Srinivasan, Yuhong Yan, Yong-bo Liang, Abhijeet Roy, B. Kumara, Incheon Paik, Wuhui Chen, Frederic Montagut, R. Molva, S. Golega, Shuai Zhao, Bo Cheng, Le Yu, Shou-lu Hou, Yang Zhang\",\"doi\":\"10.4018/ijwsr.2020010104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with true information, rumors spread in online social networks (OSN) on an unprecedented scale. In recent days, rumor identification gains more interest among the researchers. Finding rumors also poses other critical challenges like noisy and imprecise input data, data sparsity, and unclear interpretations of the output. To address these issues, we propose a neuro-fuzzy classification approach called the neuro-fuzzy rumor detector (NFRD) to automatically identify the rumors in OSNs. NFRD quickly transforms the input to fuzzy rules which classify the rumor. Neural networks handle larger input data. Fuzzy systems are better in handling uncertainty and imprecision in input data by producing fuzzy rules that effectively eliminate the unclear inputs. NFRD also considers the semantic aspects of information to ensure better classification. The neuro-fuzzy approach addresses the most common problems such as uncertainty elimination, noise reduction, and quicker generalization. Experimental results show the proposed approach performs well against state-of-the-art rumor detecting techniques.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"54 1\",\"pages\":\"64-82\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.2020010104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.2020010104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

伴随着真实的信息,谣言在网络社交网络(OSN)中以前所未有的规模传播。近年来,谣言识别在研究者中引起了更大的兴趣。寻找谣言还带来了其他关键挑战,如嘈杂和不精确的输入数据、数据稀疏性以及对输出的不明确解释。为了解决这些问题,我们提出了一种神经模糊分类方法,称为神经模糊谣言检测器(NFRD)来自动识别asn中的谣言。NFRD快速将输入转换为模糊规则,对谣言进行分类。神经网络处理更大的输入数据。模糊系统通过产生模糊规则来有效地消除不明确的输入,从而更好地处理输入数据的不确定性和不精确性。NFRD还考虑信息的语义方面,以确保更好的分类。神经模糊方法解决了最常见的问题,如不确定性消除、噪声降低和更快的泛化。实验结果表明,该方法能够很好地对抗当前最先进的谣言检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Neuro-Fuzzy Approach to Detect Rumors in Online Social Networks
Along with true information, rumors spread in online social networks (OSN) on an unprecedented scale. In recent days, rumor identification gains more interest among the researchers. Finding rumors also poses other critical challenges like noisy and imprecise input data, data sparsity, and unclear interpretations of the output. To address these issues, we propose a neuro-fuzzy classification approach called the neuro-fuzzy rumor detector (NFRD) to automatically identify the rumors in OSNs. NFRD quickly transforms the input to fuzzy rules which classify the rumor. Neural networks handle larger input data. Fuzzy systems are better in handling uncertainty and imprecision in input data by producing fuzzy rules that effectively eliminate the unclear inputs. NFRD also considers the semantic aspects of information to ensure better classification. The neuro-fuzzy approach addresses the most common problems such as uncertainty elimination, noise reduction, and quicker generalization. Experimental results show the proposed approach performs well against state-of-the-art rumor detecting techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1