Thanadon Dokrungkoon, Preyaporn Onsod, Prapatsorn Areesirisuk, B. Rerkamnuaychoke, K. Vanikieti, T. Chareonsirisuthigul
{"title":"MLPA技术检测Leber遗传性视神经病变常见突变的效果","authors":"Thanadon Dokrungkoon, Preyaporn Onsod, Prapatsorn Areesirisuk, B. Rerkamnuaychoke, K. Vanikieti, T. Chareonsirisuthigul","doi":"10.1080/24701394.2019.1670819","DOIUrl":null,"url":null,"abstract":"Abstract Leber hereditary optic neuropathy (LHON) causes painless vision loss resulting from mitochondrial DNA (mtDNA) mutation. Over 95% of LHON cases result from one of three mtDNA point mutations (m.3460G>A, m.11778G>A, and m.14484T>C). There is no established cure for LHON; early and accurate diagnosis would enable patients to be given appropriate treatments leading to a reduction of the disease progression. To increase the accessibility to molecular genetic testing for LHON, an accurate and cost-effective technique is required. The purpose of this study was to evaluate the accuracy of multiplex ligation-dependent probe amplification (MLPA) for detecting the three common mutations in 18 LHON blood specimens. Validation of the results using direct DNA sequencing technology proved that the MLPA technique had 100% accuracy, with no false-positive results. This study demonstrates that MLPA could provide a highly accurate, economical, and widely accessible technique for routine molecular genetic testing for mitochondrial disorders.","PeriodicalId":54298,"journal":{"name":"Mitochondrial Dna Part a","volume":"76 1","pages":"819 - 824"},"PeriodicalIF":1.1000,"publicationDate":"2019-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of the MLPA technique for detecting common mutations in Leber hereditary optic neuropathy\",\"authors\":\"Thanadon Dokrungkoon, Preyaporn Onsod, Prapatsorn Areesirisuk, B. Rerkamnuaychoke, K. Vanikieti, T. Chareonsirisuthigul\",\"doi\":\"10.1080/24701394.2019.1670819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Leber hereditary optic neuropathy (LHON) causes painless vision loss resulting from mitochondrial DNA (mtDNA) mutation. Over 95% of LHON cases result from one of three mtDNA point mutations (m.3460G>A, m.11778G>A, and m.14484T>C). There is no established cure for LHON; early and accurate diagnosis would enable patients to be given appropriate treatments leading to a reduction of the disease progression. To increase the accessibility to molecular genetic testing for LHON, an accurate and cost-effective technique is required. The purpose of this study was to evaluate the accuracy of multiplex ligation-dependent probe amplification (MLPA) for detecting the three common mutations in 18 LHON blood specimens. Validation of the results using direct DNA sequencing technology proved that the MLPA technique had 100% accuracy, with no false-positive results. This study demonstrates that MLPA could provide a highly accurate, economical, and widely accessible technique for routine molecular genetic testing for mitochondrial disorders.\",\"PeriodicalId\":54298,\"journal\":{\"name\":\"Mitochondrial Dna Part a\",\"volume\":\"76 1\",\"pages\":\"819 - 824\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna Part a\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/24701394.2019.1670819\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna Part a","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24701394.2019.1670819","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Performance of the MLPA technique for detecting common mutations in Leber hereditary optic neuropathy
Abstract Leber hereditary optic neuropathy (LHON) causes painless vision loss resulting from mitochondrial DNA (mtDNA) mutation. Over 95% of LHON cases result from one of three mtDNA point mutations (m.3460G>A, m.11778G>A, and m.14484T>C). There is no established cure for LHON; early and accurate diagnosis would enable patients to be given appropriate treatments leading to a reduction of the disease progression. To increase the accessibility to molecular genetic testing for LHON, an accurate and cost-effective technique is required. The purpose of this study was to evaluate the accuracy of multiplex ligation-dependent probe amplification (MLPA) for detecting the three common mutations in 18 LHON blood specimens. Validation of the results using direct DNA sequencing technology proved that the MLPA technique had 100% accuracy, with no false-positive results. This study demonstrates that MLPA could provide a highly accurate, economical, and widely accessible technique for routine molecular genetic testing for mitochondrial disorders.
期刊介绍:
Mitochondrial DNA Part A publishes original high-quality manuscripts on physical, chemical, and biochemical aspects of mtDNA and proteins involved in mtDNA metabolism, and/or interactions. Manuscripts on cytosolic and extracellular mtDNA, and on dysfunction caused by alterations in mtDNA integrity as well as methodological papers detailing novel approaches for mtDNA manipulation in vitro and in vivo are welcome. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The Journal also considers manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences, as well as papers that discuss the utility of mitochondrial DNA information in medical studies and in human evolutionary biology.