有限状态机可逆性检验的有效代数方法

Zineb Lotfi, Hamid Khalifi, Faissal Ouardi
{"title":"有限状态机可逆性检验的有效代数方法","authors":"Zineb Lotfi, Hamid Khalifi, Faissal Ouardi","doi":"10.3390/computation11070125","DOIUrl":null,"url":null,"abstract":"The emergence of new embedded system technologies, such as IoT, requires the design of new lightweight cryptosystems to meet different hardware restrictions. In this context, the concept of Finite State Machines (FSMs) can offer a robust solution when using cryptosystems based on finite automata, known as FAPKC (Finite Automaton Public Key Cryptosystems), introduced by Renji Tao. These cryptosystems have been proposed as alternatives to traditional public key cryptosystems, such as RSA. They are based on composing two private keys, which are two FSMs M1 and M2 with the property of invertibility with finite delay to obtain the composed FSM M=M1oM2, which is the public key. The invert process (factorizing) is hard to compute. Unfortunately, these cryptosystems have not really been adopted in real-world applications, and this is mainly due to the lack of profound studies on the FAPKC key space and a random generator program. In this paper, we first introduce an efficient algebraic method based on the notion of a testing table to compute the delay of invertibility of an FSM. Then, we carry out a statistical study on the number of invertible FSMs with finite delay by varying the number of states as well as the number of output symbols. This allows us to estimate the landscape of the space of invertible FSMs, which is considered a first step toward the design of a random generator.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"7 1","pages":"125"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Algebraic Method for Testing the Invertibility of Finite State Machines\",\"authors\":\"Zineb Lotfi, Hamid Khalifi, Faissal Ouardi\",\"doi\":\"10.3390/computation11070125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of new embedded system technologies, such as IoT, requires the design of new lightweight cryptosystems to meet different hardware restrictions. In this context, the concept of Finite State Machines (FSMs) can offer a robust solution when using cryptosystems based on finite automata, known as FAPKC (Finite Automaton Public Key Cryptosystems), introduced by Renji Tao. These cryptosystems have been proposed as alternatives to traditional public key cryptosystems, such as RSA. They are based on composing two private keys, which are two FSMs M1 and M2 with the property of invertibility with finite delay to obtain the composed FSM M=M1oM2, which is the public key. The invert process (factorizing) is hard to compute. Unfortunately, these cryptosystems have not really been adopted in real-world applications, and this is mainly due to the lack of profound studies on the FAPKC key space and a random generator program. In this paper, we first introduce an efficient algebraic method based on the notion of a testing table to compute the delay of invertibility of an FSM. Then, we carry out a statistical study on the number of invertible FSMs with finite delay by varying the number of states as well as the number of output symbols. This allows us to estimate the landscape of the space of invertible FSMs, which is considered a first step toward the design of a random generator.\",\"PeriodicalId\":10526,\"journal\":{\"name\":\"Comput.\",\"volume\":\"7 1\",\"pages\":\"125\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11070125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11070125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新的嵌入式系统技术的出现,如物联网,需要设计新的轻量级密码系统来满足不同的硬件限制。在这种情况下,有限状态机(FSMs)的概念可以在使用基于有限自动机的密码系统时提供一个健壮的解决方案,称为FAPKC(有限自动机公钥密码系统),由陶仁次介绍。这些密码系统已被提议作为传统公钥密码系统(如RSA)的替代方案。它们是基于组合两个私钥,即两个具有有限延迟可逆性的FSM M1和M2,从而得到组合的FSM M=M1oM2,即公钥。逆过程(因式分解)很难计算。不幸的是,这些密码系统并没有真正应用于实际应用,这主要是由于缺乏对FAPKC密钥空间和随机生成器程序的深入研究。本文首先介绍了一种基于测试表概念的计算FSM可逆性延迟的有效代数方法。然后,通过改变状态数和输出符号数,对有限延迟可逆fsm的数量进行了统计研究。这使我们能够估计可逆fsm空间的景观,这被认为是设计随机发生器的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Algebraic Method for Testing the Invertibility of Finite State Machines
The emergence of new embedded system technologies, such as IoT, requires the design of new lightweight cryptosystems to meet different hardware restrictions. In this context, the concept of Finite State Machines (FSMs) can offer a robust solution when using cryptosystems based on finite automata, known as FAPKC (Finite Automaton Public Key Cryptosystems), introduced by Renji Tao. These cryptosystems have been proposed as alternatives to traditional public key cryptosystems, such as RSA. They are based on composing two private keys, which are two FSMs M1 and M2 with the property of invertibility with finite delay to obtain the composed FSM M=M1oM2, which is the public key. The invert process (factorizing) is hard to compute. Unfortunately, these cryptosystems have not really been adopted in real-world applications, and this is mainly due to the lack of profound studies on the FAPKC key space and a random generator program. In this paper, we first introduce an efficient algebraic method based on the notion of a testing table to compute the delay of invertibility of an FSM. Then, we carry out a statistical study on the number of invertible FSMs with finite delay by varying the number of states as well as the number of output symbols. This allows us to estimate the landscape of the space of invertible FSMs, which is considered a first step toward the design of a random generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A U-Net Architecture for Inpainting Lightstage Normal Maps Implementing Virtualization on Single-Board Computers: A Case Study on Edge Computing Electrocardiogram Signals Classification Using Deep-Learning-Based Incorporated Convolutional Neural Network and Long Short-Term Memory Framework The Mechanism of Resonant Amplification of One-Dimensional Detonation Propagating in a Non-Uniform Mixture Application of Immersive VR Serious Games in the Treatment of Schizophrenia Negative Symptoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1