{"title":"高填充系数非制冷红外探测器四分之一波吸收结构的设计、分析与实现","authors":"Ramazan Cetin, Ozan Erturk, T. Akin","doi":"10.1109/IRMMW-THZ.2018.8510442","DOIUrl":null,"url":null,"abstract":"This study presents design, analysis, optimization, and fabrication of umbrella structures as an efficient quarter wave absorber within the Long Wave Infrared (LWIR) range for uncooled IR detectors. Both the effect of the ni-chrome (NiCr) layer and effect of varying pixel pitch sizes on the IR absorption performance of the umbrella structures are examined. An average of 96% absorption is measured for the optimized case within the LWIRrange.","PeriodicalId":6653,"journal":{"name":"2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","volume":"51 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design, Analysis and Implementation of Quarter-wave Absorber Structure for Uncooled Infrared Detectors with High Fill Factor\",\"authors\":\"Ramazan Cetin, Ozan Erturk, T. Akin\",\"doi\":\"10.1109/IRMMW-THZ.2018.8510442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents design, analysis, optimization, and fabrication of umbrella structures as an efficient quarter wave absorber within the Long Wave Infrared (LWIR) range for uncooled IR detectors. Both the effect of the ni-chrome (NiCr) layer and effect of varying pixel pitch sizes on the IR absorption performance of the umbrella structures are examined. An average of 96% absorption is measured for the optimized case within the LWIRrange.\",\"PeriodicalId\":6653,\"journal\":{\"name\":\"2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"volume\":\"51 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRMMW-THZ.2018.8510442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2018.8510442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, Analysis and Implementation of Quarter-wave Absorber Structure for Uncooled Infrared Detectors with High Fill Factor
This study presents design, analysis, optimization, and fabrication of umbrella structures as an efficient quarter wave absorber within the Long Wave Infrared (LWIR) range for uncooled IR detectors. Both the effect of the ni-chrome (NiCr) layer and effect of varying pixel pitch sizes on the IR absorption performance of the umbrella structures are examined. An average of 96% absorption is measured for the optimized case within the LWIRrange.