飞利浦研究公司的连续语音识别系统

V. Steinbiss, H. Ney , X. Aubert, S. Besling, C. Dugast, U. Essen, D. Geller, R. Haeb-Umbach, R. Kneser, H.-G. Meier, M. Oerder, B.-H. Tran
{"title":"飞利浦研究公司的连续语音识别系统","authors":"V. Steinbiss,&nbsp;H. Ney ,&nbsp;X. Aubert,&nbsp;S. Besling,&nbsp;C. Dugast,&nbsp;U. Essen,&nbsp;D. Geller,&nbsp;R. Haeb-Umbach,&nbsp;R. Kneser,&nbsp;H.-G. Meier,&nbsp;M. Oerder,&nbsp;B.-H. Tran","doi":"10.1016/0165-5817(96)81584-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper gives an overview of the Philips Research system for continuous-speech recognition. The recognition architecture is based on an integrated statistical approach. The system has been successfully applied to various tasks in American English and German, ranging from small vocabulary tasks to very large vocabulary tasks and from recognition only to speech understanding. Here, we concentrate on phoneme-based continuous-speech recognition for large vocabulary recognition as used for dictation, which covers a significant part of our research work on speech recognition. We describe this task and report on experimental results. In order to allow a comparison with the performance of other systems, a section with an evaluation on the standard North American Business news (NAB<span><sup>2</sup></span>) task (dictation of American English newspaper text) is supplied.</p></div>","PeriodicalId":101018,"journal":{"name":"Philips Journal of Research","volume":"49 4","pages":"Pages 317-352"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0165-5817(96)81584-1","citationCount":"36","resultStr":"{\"title\":\"The Philips Research system for continuous-speech recognition\",\"authors\":\"V. Steinbiss,&nbsp;H. Ney ,&nbsp;X. Aubert,&nbsp;S. Besling,&nbsp;C. Dugast,&nbsp;U. Essen,&nbsp;D. Geller,&nbsp;R. Haeb-Umbach,&nbsp;R. Kneser,&nbsp;H.-G. Meier,&nbsp;M. Oerder,&nbsp;B.-H. Tran\",\"doi\":\"10.1016/0165-5817(96)81584-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper gives an overview of the Philips Research system for continuous-speech recognition. The recognition architecture is based on an integrated statistical approach. The system has been successfully applied to various tasks in American English and German, ranging from small vocabulary tasks to very large vocabulary tasks and from recognition only to speech understanding. Here, we concentrate on phoneme-based continuous-speech recognition for large vocabulary recognition as used for dictation, which covers a significant part of our research work on speech recognition. We describe this task and report on experimental results. In order to allow a comparison with the performance of other systems, a section with an evaluation on the standard North American Business news (NAB<span><sup>2</sup></span>) task (dictation of American English newspaper text) is supplied.</p></div>\",\"PeriodicalId\":101018,\"journal\":{\"name\":\"Philips Journal of Research\",\"volume\":\"49 4\",\"pages\":\"Pages 317-352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0165-5817(96)81584-1\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philips Journal of Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0165581796815841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philips Journal of Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0165581796815841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文概述了飞利浦研究系统的连续语音识别。识别体系结构基于综合统计方法。该系统已成功应用于美式英语和德语的各种任务,从小词汇任务到大词汇任务,从单纯的识别到语音理解。本文主要研究基于音素的连续语音识别,用于大词汇量的听写识别,这是我们语音识别研究工作的重要组成部分。我们描述了这个任务并报告了实验结果。为了与其他系统的性能进行比较,提供了对标准北美商业新闻(NAB2)任务(美国英语报纸文本的听写)的评估部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Philips Research system for continuous-speech recognition

This paper gives an overview of the Philips Research system for continuous-speech recognition. The recognition architecture is based on an integrated statistical approach. The system has been successfully applied to various tasks in American English and German, ranging from small vocabulary tasks to very large vocabulary tasks and from recognition only to speech understanding. Here, we concentrate on phoneme-based continuous-speech recognition for large vocabulary recognition as used for dictation, which covers a significant part of our research work on speech recognition. We describe this task and report on experimental results. In order to allow a comparison with the performance of other systems, a section with an evaluation on the standard North American Business news (NAB2) task (dictation of American English newspaper text) is supplied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithms in Ambient Intelligence Editorial Materials for polymer-light emitting diodes Theory of luminescence quenching and photobleaching in conjugated polymers 2D/3D registration and motion tracking for surgical interventions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1