代码变更的自动聚类

Patrick Kreutzer, Georg Dotzler, M. Ring, B. Eskofier, M. Philippsen
{"title":"代码变更的自动聚类","authors":"Patrick Kreutzer, Georg Dotzler, M. Ring, B. Eskofier, M. Philippsen","doi":"10.1145/2901739.2901749","DOIUrl":null,"url":null,"abstract":"Several research tools and projects require groups of similar code changes asinput. Examples are recommendation and bug finding tools that can providevaluable information to developers based on such data. With the help ofsimilar code changes they can simplify the application of bug fixes and codechanges to multiple locations in a project. But despite their benefit, thepractical value of existing tools is limited, as users need to manually specifythe input data, i.e., the groups of similar code changes.To overcome this drawback, this paper presents and evaluates two syntacticalsimilarity metrics, one of them is specifically designed to run fast, incombination with two carefully selected and self-tuning clustering algorithmsto automatically detect groups of similar code changes.We evaluate the combinations of metrics and clustering algorithms by applyingthem to several open source projects and also publish the detected groups ofsimilar code changes online as a reference dataset. The automatically detectedgroups of similar code changes work well when used as input for LASE, arecommendation system for code changes.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"298 1","pages":"61-72"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Automatic Clustering of Code Changes\",\"authors\":\"Patrick Kreutzer, Georg Dotzler, M. Ring, B. Eskofier, M. Philippsen\",\"doi\":\"10.1145/2901739.2901749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several research tools and projects require groups of similar code changes asinput. Examples are recommendation and bug finding tools that can providevaluable information to developers based on such data. With the help ofsimilar code changes they can simplify the application of bug fixes and codechanges to multiple locations in a project. But despite their benefit, thepractical value of existing tools is limited, as users need to manually specifythe input data, i.e., the groups of similar code changes.To overcome this drawback, this paper presents and evaluates two syntacticalsimilarity metrics, one of them is specifically designed to run fast, incombination with two carefully selected and self-tuning clustering algorithmsto automatically detect groups of similar code changes.We evaluate the combinations of metrics and clustering algorithms by applyingthem to several open source projects and also publish the detected groups ofsimilar code changes online as a reference dataset. The automatically detectedgroups of similar code changes work well when used as input for LASE, arecommendation system for code changes.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"298 1\",\"pages\":\"61-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901739.2901749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901739.2901749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

一些研究工具和项目需要一组类似的代码更改作为输入。例如,推荐和bug查找工具可以根据这些数据为开发人员提供有价值的信息。在类似代码更改的帮助下,它们可以简化bug修复和代码更改在项目中多个位置的应用程序。但是,尽管它们有好处,现有工具的实用价值是有限的,因为用户需要手动指定输入数据,即相似代码更改的组。为了克服这一缺点,本文提出并评估了两种语法相似性度量,其中一种是专门设计用于快速运行的,与两种精心选择和自调优的聚类算法相结合,以自动检测相似代码更改的组。我们通过将度量和聚类算法应用于几个开源项目来评估它们的组合,并将检测到的类似代码更改组作为参考数据集在线发布。当将自动检测到的相似代码更改组用作LASE(代码更改推荐系统)的输入时,效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Clustering of Code Changes
Several research tools and projects require groups of similar code changes asinput. Examples are recommendation and bug finding tools that can providevaluable information to developers based on such data. With the help ofsimilar code changes they can simplify the application of bug fixes and codechanges to multiple locations in a project. But despite their benefit, thepractical value of existing tools is limited, as users need to manually specifythe input data, i.e., the groups of similar code changes.To overcome this drawback, this paper presents and evaluates two syntacticalsimilarity metrics, one of them is specifically designed to run fast, incombination with two carefully selected and self-tuning clustering algorithmsto automatically detect groups of similar code changes.We evaluate the combinations of metrics and clustering algorithms by applyingthem to several open source projects and also publish the detected groups ofsimilar code changes online as a reference dataset. The automatically detectedgroups of similar code changes work well when used as input for LASE, arecommendation system for code changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSR '20: 17th International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020 Who you gonna call?: analyzing web requests in Android applications Cena słońca w projektowaniu architektonicznym Multi-extract and Multi-level Dataset of Mozilla Issue Tracking History Interactive Exploration of Developer Interaction Traces using a Hidden Markov Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1