基于混沌搜索的量子粒子群图像对齐算法

S. Meshoul, M. Batouche
{"title":"基于混沌搜索的量子粒子群图像对齐算法","authors":"S. Meshoul, M. Batouche","doi":"10.1109/CEC.2010.5585954","DOIUrl":null,"url":null,"abstract":"In an attempt to improve existing evolutionary metaheuristics quantum computing principles have been used. While some of them focus on the representation scheme adopted others deal with the behavior of the underlying algorithm. In this paper, we propose a search strategy that combines the ideas of use of a chaotic search with a selection operation within a quantum behaved Particle Swarm optimization algorithm. This search strategy is developed in order to achieve image alignment through maximization of an entropic measure: mutual information. The proposed framework is general as it handles any kind of transformation. Experimental results show the effectiveness of the algorithm to achieve good quality alignment for both mono modality and multimodality images. The proposed combination of the two features has lead to better solutions compared to those obtained by using each feature alone.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"105 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A novel quantum behaved Particle Swarm optimization algorithm with chaotic search for image alignment\",\"authors\":\"S. Meshoul, M. Batouche\",\"doi\":\"10.1109/CEC.2010.5585954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an attempt to improve existing evolutionary metaheuristics quantum computing principles have been used. While some of them focus on the representation scheme adopted others deal with the behavior of the underlying algorithm. In this paper, we propose a search strategy that combines the ideas of use of a chaotic search with a selection operation within a quantum behaved Particle Swarm optimization algorithm. This search strategy is developed in order to achieve image alignment through maximization of an entropic measure: mutual information. The proposed framework is general as it handles any kind of transformation. Experimental results show the effectiveness of the algorithm to achieve good quality alignment for both mono modality and multimodality images. The proposed combination of the two features has lead to better solutions compared to those obtained by using each feature alone.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"105 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2010.5585954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2010.5585954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

为了改进现有的进化元启发式,已经使用了量子计算原理。其中一些集中于所采用的表示方案,另一些则处理底层算法的行为。在本文中,我们提出了一种搜索策略,该策略结合了量子粒子群优化算法中使用混沌搜索和选择操作的思想。这种搜索策略是为了通过最大限度地利用熵度量:互信息来实现图像对齐。所建议的框架是通用的,因为它可以处理任何类型的转换。实验结果表明,该算法对单模态和多模态图像都能实现高质量的对齐。与单独使用每个特征获得的解决方案相比,提出的两个特征的组合产生了更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel quantum behaved Particle Swarm optimization algorithm with chaotic search for image alignment
In an attempt to improve existing evolutionary metaheuristics quantum computing principles have been used. While some of them focus on the representation scheme adopted others deal with the behavior of the underlying algorithm. In this paper, we propose a search strategy that combines the ideas of use of a chaotic search with a selection operation within a quantum behaved Particle Swarm optimization algorithm. This search strategy is developed in order to achieve image alignment through maximization of an entropic measure: mutual information. The proposed framework is general as it handles any kind of transformation. Experimental results show the effectiveness of the algorithm to achieve good quality alignment for both mono modality and multimodality images. The proposed combination of the two features has lead to better solutions compared to those obtained by using each feature alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1