不朽传感器网络的联合节点部署和无线能量转移调度

Rong Du, C. Fischione, Ming Xiao
{"title":"不朽传感器网络的联合节点部署和无线能量转移调度","authors":"Rong Du, C. Fischione, Ming Xiao","doi":"10.23919/WIOPT.2017.7959918","DOIUrl":null,"url":null,"abstract":"The lifetime of a wireless sensor network (WSN) is limited by the lifetime of the individual sensor nodes. A promising technique to extend the lifetime of the nodes is wireless energy transfer. The WSN lifetime can also be extended by exploiting the redundancy in the nodes' deployment, which allows the implementation of duty-cycling mechanisms. In this paper, the joint problem of optimal sensor node deployment and WET scheduling is investigated. Such a problem is formulated as an integer optimization whose solution is challenging due to the binary decision variables and non-linear constraints. To solve the problem, an approach based on two steps is proposed. First, the necessary condition for which the WSN is immortal is established. Based on this result, an algorithm to solve the node deployment problem is developed. Then, the optimal WET scheduling is given by a scheduling algorithm. The WSN is shown to be immortal from a networking point of view, given the optimal deployment and WET scheduling. Theoretical results show that the proposed algorithm achieves the optimal node deployment in terms of the number of deployed nodes. In the simulation, it is shown that the proposed algorithm reduces significantly the number of nodes to deploy compared to a random-based approach. The results also suggest that, under such deployment, the optimal scheduling and WET can make WSNs immortal.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Joint node deployment and wireless energy transfer scheduling for immortal sensor networks\",\"authors\":\"Rong Du, C. Fischione, Ming Xiao\",\"doi\":\"10.23919/WIOPT.2017.7959918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lifetime of a wireless sensor network (WSN) is limited by the lifetime of the individual sensor nodes. A promising technique to extend the lifetime of the nodes is wireless energy transfer. The WSN lifetime can also be extended by exploiting the redundancy in the nodes' deployment, which allows the implementation of duty-cycling mechanisms. In this paper, the joint problem of optimal sensor node deployment and WET scheduling is investigated. Such a problem is formulated as an integer optimization whose solution is challenging due to the binary decision variables and non-linear constraints. To solve the problem, an approach based on two steps is proposed. First, the necessary condition for which the WSN is immortal is established. Based on this result, an algorithm to solve the node deployment problem is developed. Then, the optimal WET scheduling is given by a scheduling algorithm. The WSN is shown to be immortal from a networking point of view, given the optimal deployment and WET scheduling. Theoretical results show that the proposed algorithm achieves the optimal node deployment in terms of the number of deployed nodes. In the simulation, it is shown that the proposed algorithm reduces significantly the number of nodes to deploy compared to a random-based approach. The results also suggest that, under such deployment, the optimal scheduling and WET can make WSNs immortal.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

无线传感器网络(WSN)的生存期受到单个传感器节点生存期的限制。无线能量传输是一种很有前途的延长节点寿命的技术。通过利用节点部署中的冗余,可以延长WSN的生存期,从而实现责任循环机制。本文研究了传感器节点最优部署和WET调度的联合问题。该问题被表述为一个整数优化问题,由于二元决策变量和非线性约束,其求解具有挑战性。为了解决这一问题,提出了一种分两步的方法。首先,建立了无线传感器网络不朽的必要条件。在此基础上,提出了一种解决节点部署问题的算法。然后,通过调度算法给出了最优的WET调度。从网络的角度来看,考虑到最优部署和WET调度,WSN是不朽的。理论结果表明,就节点部署数量而言,该算法达到了最优节点部署。仿真结果表明,与基于随机的方法相比,该算法显著减少了需要部署的节点数量。结果还表明,在这种部署下,最优调度和WET可以使wsn不朽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint node deployment and wireless energy transfer scheduling for immortal sensor networks
The lifetime of a wireless sensor network (WSN) is limited by the lifetime of the individual sensor nodes. A promising technique to extend the lifetime of the nodes is wireless energy transfer. The WSN lifetime can also be extended by exploiting the redundancy in the nodes' deployment, which allows the implementation of duty-cycling mechanisms. In this paper, the joint problem of optimal sensor node deployment and WET scheduling is investigated. Such a problem is formulated as an integer optimization whose solution is challenging due to the binary decision variables and non-linear constraints. To solve the problem, an approach based on two steps is proposed. First, the necessary condition for which the WSN is immortal is established. Based on this result, an algorithm to solve the node deployment problem is developed. Then, the optimal WET scheduling is given by a scheduling algorithm. The WSN is shown to be immortal from a networking point of view, given the optimal deployment and WET scheduling. Theoretical results show that the proposed algorithm achieves the optimal node deployment in terms of the number of deployed nodes. In the simulation, it is shown that the proposed algorithm reduces significantly the number of nodes to deploy compared to a random-based approach. The results also suggest that, under such deployment, the optimal scheduling and WET can make WSNs immortal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker Keynote speaker Ad-Hoc, Mobile, and Wireless Networks: 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, October 19–21, 2020, Proceedings Retraction Note to: Mobility Aided Context-Aware Forwarding Approach for Destination-Less OppNets Ad-Hoc, Mobile, and Wireless Networks: 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1–3, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1