细菌汞转运体MerC和植物SNARE SYP121融合蛋白的根细胞型特异性表达差异影响拟南芥镉积累模式

IF 1.9 4区 农林科学 Q3 ENVIRONMENTAL SCIENCES Soil Science and Plant Nutrition Pub Date : 2023-07-11 DOI:10.1080/00380768.2023.2234396
Shimpei Uraguchi, Y. Ohshiro, Kaede Abe, Yuta Tsuchiya, Ryosuke Nakamura, Yasukazu Takanezawa, M. Kiyono
{"title":"细菌汞转运体MerC和植物SNARE SYP121融合蛋白的根细胞型特异性表达差异影响拟南芥镉积累模式","authors":"Shimpei Uraguchi, Y. Ohshiro, Kaede Abe, Yuta Tsuchiya, Ryosuke Nakamura, Yasukazu Takanezawa, M. Kiyono","doi":"10.1080/00380768.2023.2234396","DOIUrl":null,"url":null,"abstract":"ABSTRACT There is increasing demand for solutions against cadmium pollution to secure food safety, and phytoremediation is one of the potential tools. We previously found that a bacterial mercury transporter MerC possesses cadmium uptake activity and its overexpression as a fusion protein with a plasma-membrane resident SNARE protein, SYP121 enhances the cadmium uptake ability of Arabidopsis plants. In this study, we examined whether two different root cell-type specific expression systems of MerC-SYP121 fusion protein could efficiently enhance cadmium accumulation of Arabidopsis plants, compared to the p35S-driven ubiquitous expression system. Representative transgenic lines expressing MerC-SYP121 in root surface cells (pEpi lines) or root endodermal cells (pSCR lines), established in our previous studies, were subjected to different cadmium treatments along with the p35S line. A vertical agar plate assay showed that root surface-specific line pEpi, as well as the p35S line, showed about 15% higher cadmium accumulation in shoots after one-day 10 µM cadmium treatment, compared to the wild-type Col-0. On the other hand, the endodermis-specific line pSCR accumulated 30% less cadmium in its shoots. A similar cadmium accumulation pattern in shoots was observed under the environmentally relevant much lower cadmium treatment of 0.1 µM for 4 d, using the hydroponic culture system. To further examine the potential of the MerC-SYP121 expression system for cadmium phytoremediation, the transgenic plants were hydroponically exposed to 0.1 µM for 4 weeks. The cadmium accumulation after the 4 weeks of treatment was again 16% higher in the pEpi shoots compared to that of Col-0, whereas the p35S line only showed 6% higher Cd concentration. Shoots of the pSCR line accumulated slightly less cadmium compared to Col-0. Ionomic profiles in these plants were analyzed, however, pSCR-specific patterns were not evident. Nevertheless, in our previous studies, pEpi and pSCR lines both efficiently accumulated more mercury in shoots than in the wild-type. The presented results suggest that the effects of cell-type-specific MerC-SYP121 expression differ by the target metals and its expression in root surface cells rather than that in endodermis is suitable for enhancing root cadmium uptake and subsequent shoot accumulation.","PeriodicalId":21852,"journal":{"name":"Soil Science and Plant Nutrition","volume":"33 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Root cell-type specific expressions of bacterial mercury transporter MerC and plant SNARE SYP121 fusion protein differentially affect cadmium accumulation patterns of Arabidopsis\",\"authors\":\"Shimpei Uraguchi, Y. Ohshiro, Kaede Abe, Yuta Tsuchiya, Ryosuke Nakamura, Yasukazu Takanezawa, M. Kiyono\",\"doi\":\"10.1080/00380768.2023.2234396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT There is increasing demand for solutions against cadmium pollution to secure food safety, and phytoremediation is one of the potential tools. We previously found that a bacterial mercury transporter MerC possesses cadmium uptake activity and its overexpression as a fusion protein with a plasma-membrane resident SNARE protein, SYP121 enhances the cadmium uptake ability of Arabidopsis plants. In this study, we examined whether two different root cell-type specific expression systems of MerC-SYP121 fusion protein could efficiently enhance cadmium accumulation of Arabidopsis plants, compared to the p35S-driven ubiquitous expression system. Representative transgenic lines expressing MerC-SYP121 in root surface cells (pEpi lines) or root endodermal cells (pSCR lines), established in our previous studies, were subjected to different cadmium treatments along with the p35S line. A vertical agar plate assay showed that root surface-specific line pEpi, as well as the p35S line, showed about 15% higher cadmium accumulation in shoots after one-day 10 µM cadmium treatment, compared to the wild-type Col-0. On the other hand, the endodermis-specific line pSCR accumulated 30% less cadmium in its shoots. A similar cadmium accumulation pattern in shoots was observed under the environmentally relevant much lower cadmium treatment of 0.1 µM for 4 d, using the hydroponic culture system. To further examine the potential of the MerC-SYP121 expression system for cadmium phytoremediation, the transgenic plants were hydroponically exposed to 0.1 µM for 4 weeks. The cadmium accumulation after the 4 weeks of treatment was again 16% higher in the pEpi shoots compared to that of Col-0, whereas the p35S line only showed 6% higher Cd concentration. Shoots of the pSCR line accumulated slightly less cadmium compared to Col-0. Ionomic profiles in these plants were analyzed, however, pSCR-specific patterns were not evident. Nevertheless, in our previous studies, pEpi and pSCR lines both efficiently accumulated more mercury in shoots than in the wild-type. The presented results suggest that the effects of cell-type-specific MerC-SYP121 expression differ by the target metals and its expression in root surface cells rather than that in endodermis is suitable for enhancing root cadmium uptake and subsequent shoot accumulation.\",\"PeriodicalId\":21852,\"journal\":{\"name\":\"Soil Science and Plant Nutrition\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Science and Plant Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/00380768.2023.2234396\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science and Plant Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00380768.2023.2234396","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Root cell-type specific expressions of bacterial mercury transporter MerC and plant SNARE SYP121 fusion protein differentially affect cadmium accumulation patterns of Arabidopsis
ABSTRACT There is increasing demand for solutions against cadmium pollution to secure food safety, and phytoremediation is one of the potential tools. We previously found that a bacterial mercury transporter MerC possesses cadmium uptake activity and its overexpression as a fusion protein with a plasma-membrane resident SNARE protein, SYP121 enhances the cadmium uptake ability of Arabidopsis plants. In this study, we examined whether two different root cell-type specific expression systems of MerC-SYP121 fusion protein could efficiently enhance cadmium accumulation of Arabidopsis plants, compared to the p35S-driven ubiquitous expression system. Representative transgenic lines expressing MerC-SYP121 in root surface cells (pEpi lines) or root endodermal cells (pSCR lines), established in our previous studies, were subjected to different cadmium treatments along with the p35S line. A vertical agar plate assay showed that root surface-specific line pEpi, as well as the p35S line, showed about 15% higher cadmium accumulation in shoots after one-day 10 µM cadmium treatment, compared to the wild-type Col-0. On the other hand, the endodermis-specific line pSCR accumulated 30% less cadmium in its shoots. A similar cadmium accumulation pattern in shoots was observed under the environmentally relevant much lower cadmium treatment of 0.1 µM for 4 d, using the hydroponic culture system. To further examine the potential of the MerC-SYP121 expression system for cadmium phytoremediation, the transgenic plants were hydroponically exposed to 0.1 µM for 4 weeks. The cadmium accumulation after the 4 weeks of treatment was again 16% higher in the pEpi shoots compared to that of Col-0, whereas the p35S line only showed 6% higher Cd concentration. Shoots of the pSCR line accumulated slightly less cadmium compared to Col-0. Ionomic profiles in these plants were analyzed, however, pSCR-specific patterns were not evident. Nevertheless, in our previous studies, pEpi and pSCR lines both efficiently accumulated more mercury in shoots than in the wild-type. The presented results suggest that the effects of cell-type-specific MerC-SYP121 expression differ by the target metals and its expression in root surface cells rather than that in endodermis is suitable for enhancing root cadmium uptake and subsequent shoot accumulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Science and Plant Nutrition
Soil Science and Plant Nutrition 农林科学-农艺学
CiteScore
4.80
自引率
15.00%
发文量
56
审稿时长
18-36 weeks
期刊介绍: Soil Science and Plant Nutrition is the official English journal of the Japanese Society of Soil Science and Plant Nutrition (JSSSPN), and publishes original research and reviews in soil physics, chemistry and mineralogy; soil biology; plant nutrition; soil genesis, classification and survey; soil fertility; fertilizers and soil amendments; environment; socio cultural soil science. The Journal publishes full length papers, short papers, and reviews.
期刊最新文献
Methane and nitrous oxide emissions from agricultural fields in Japan and mitigation options: a review Higher rice yield and lower greenhouse gas emissions with cattle manure amendment is achieved by alternate wetting and drying Interactive influence of particle size and carbonization temperature on Silicon availability in Rice husk biochar Preface to the special section on “past, present, and future biochar utilization for soil sustainability from Asian agronomical and ecological perspectives” Shoot and root responses to low phosphorus and their genotypic variability in selected cultivars of Japanese core collections of maize and soybean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1