A. Elhalawany, Andre Beckus, H. Kondakci, M. Monroe, Nafiseh Mohammadian, George K. Atia, A. Abouraddy
{"title":"通过相干成像重建场景","authors":"A. Elhalawany, Andre Beckus, H. Kondakci, M. Monroe, Nafiseh Mohammadian, George K. Atia, A. Abouraddy","doi":"10.1109/IPCON.2017.8116243","DOIUrl":null,"url":null,"abstract":"We implement numerical back-propagation of the experimentally obtained spatial complex coherence function to estimate both the axial and transverse positions of 1D objects. The measurement of the coherence function of partially coherent light is performed using dynamical double slits implemented via digital micromirror device.","PeriodicalId":6657,"journal":{"name":"2017 IEEE Photonics Conference (IPC) Part II","volume":"34 1","pages":"605-606"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scene reconstruction via coherency imaging\",\"authors\":\"A. Elhalawany, Andre Beckus, H. Kondakci, M. Monroe, Nafiseh Mohammadian, George K. Atia, A. Abouraddy\",\"doi\":\"10.1109/IPCON.2017.8116243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We implement numerical back-propagation of the experimentally obtained spatial complex coherence function to estimate both the axial and transverse positions of 1D objects. The measurement of the coherence function of partially coherent light is performed using dynamical double slits implemented via digital micromirror device.\",\"PeriodicalId\":6657,\"journal\":{\"name\":\"2017 IEEE Photonics Conference (IPC) Part II\",\"volume\":\"34 1\",\"pages\":\"605-606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Photonics Conference (IPC) Part II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCON.2017.8116243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Photonics Conference (IPC) Part II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCON.2017.8116243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We implement numerical back-propagation of the experimentally obtained spatial complex coherence function to estimate both the axial and transverse positions of 1D objects. The measurement of the coherence function of partially coherent light is performed using dynamical double slits implemented via digital micromirror device.