{"title":"金属基纳米材料与超声结合作为可接受的癌症治疗方法","authors":"Xiaoxiao He, Shiyue Chen, Xiang Mao","doi":"10.37871/jbres1354","DOIUrl":null,"url":null,"abstract":"Among current biological researches, there have a plenty of works related cancer therapy issues by using functional or pure-phased composites in non-invasive strategies. Especially in fabricating anticancer candidates, functional composites are divided into different sorts with different characteristics. Additionally, nanotechnology provides various approaches in utilizing composites’ functionality for cancer diagnostics and therapeutics. Compared with previous Photodynamic Therapy (PDT), Photo-Thermal Therapy (PTT), chemotherapy and radiotherapy, ultrasound is used to activate sonosensitizer to produce cytotoxic Reactive Oxygen Species (ROS) toward target cancer cells. In recent years, the form of Sonodynamic Therapy (SDT) has been making much effort to develop highly efficient metal based Nanomaterials (NMs) as sonosensitizers, which can efficiently generate ROS and has the advantages of deeper tissue penetration. However, the traditional sonosensitizers, such as porphyrins, hypericin, and curcumins suffer from complex synthesis, poor water solubility, and low tumor targeting efficacy. For contrasting this limitation, the metal based inorganic NMs show biocompatibility, controllable physicochemical properties, and ease of achieving multifunctional properties, which greatly expanded their application in SDT. In this review, we systematically summarize the metal based inorganic NMs as carrier of molecular sonosensitizers, and produce ROS under ultrasound. Moreover, the prospects of advanced metal based further materials application are also discussed.","PeriodicalId":94067,"journal":{"name":"Journal of biomedical research & environmental sciences","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-Based Nanomaterials Incorporate with Ultrasound as Acceptable Approach towards Cancer Therapy\",\"authors\":\"Xiaoxiao He, Shiyue Chen, Xiang Mao\",\"doi\":\"10.37871/jbres1354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among current biological researches, there have a plenty of works related cancer therapy issues by using functional or pure-phased composites in non-invasive strategies. Especially in fabricating anticancer candidates, functional composites are divided into different sorts with different characteristics. Additionally, nanotechnology provides various approaches in utilizing composites’ functionality for cancer diagnostics and therapeutics. Compared with previous Photodynamic Therapy (PDT), Photo-Thermal Therapy (PTT), chemotherapy and radiotherapy, ultrasound is used to activate sonosensitizer to produce cytotoxic Reactive Oxygen Species (ROS) toward target cancer cells. In recent years, the form of Sonodynamic Therapy (SDT) has been making much effort to develop highly efficient metal based Nanomaterials (NMs) as sonosensitizers, which can efficiently generate ROS and has the advantages of deeper tissue penetration. However, the traditional sonosensitizers, such as porphyrins, hypericin, and curcumins suffer from complex synthesis, poor water solubility, and low tumor targeting efficacy. For contrasting this limitation, the metal based inorganic NMs show biocompatibility, controllable physicochemical properties, and ease of achieving multifunctional properties, which greatly expanded their application in SDT. In this review, we systematically summarize the metal based inorganic NMs as carrier of molecular sonosensitizers, and produce ROS under ultrasound. Moreover, the prospects of advanced metal based further materials application are also discussed.\",\"PeriodicalId\":94067,\"journal\":{\"name\":\"Journal of biomedical research & environmental sciences\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical research & environmental sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37871/jbres1354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical research & environmental sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37871/jbres1354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metal-Based Nanomaterials Incorporate with Ultrasound as Acceptable Approach towards Cancer Therapy
Among current biological researches, there have a plenty of works related cancer therapy issues by using functional or pure-phased composites in non-invasive strategies. Especially in fabricating anticancer candidates, functional composites are divided into different sorts with different characteristics. Additionally, nanotechnology provides various approaches in utilizing composites’ functionality for cancer diagnostics and therapeutics. Compared with previous Photodynamic Therapy (PDT), Photo-Thermal Therapy (PTT), chemotherapy and radiotherapy, ultrasound is used to activate sonosensitizer to produce cytotoxic Reactive Oxygen Species (ROS) toward target cancer cells. In recent years, the form of Sonodynamic Therapy (SDT) has been making much effort to develop highly efficient metal based Nanomaterials (NMs) as sonosensitizers, which can efficiently generate ROS and has the advantages of deeper tissue penetration. However, the traditional sonosensitizers, such as porphyrins, hypericin, and curcumins suffer from complex synthesis, poor water solubility, and low tumor targeting efficacy. For contrasting this limitation, the metal based inorganic NMs show biocompatibility, controllable physicochemical properties, and ease of achieving multifunctional properties, which greatly expanded their application in SDT. In this review, we systematically summarize the metal based inorganic NMs as carrier of molecular sonosensitizers, and produce ROS under ultrasound. Moreover, the prospects of advanced metal based further materials application are also discussed.