大格拉什夫数差热旋转球体非定常自由对流初期的分析研究

S. D’Alessio
{"title":"大格拉什夫数差热旋转球体非定常自由对流初期的分析研究","authors":"S. D’Alessio","doi":"10.2495/CMEM-V7-N1-57-67","DOIUrl":null,"url":null,"abstract":"This research investigates the unsteady free convective flow of a viscous incompressible fluid from a differentially heated rotating sphere. The flow is assumed to remain laminar and to possess equatorial and azimuthal symmetry. The governing Navier-Stokes and energy equations are posed in terms of a scaled stream function vorticity formulation and are solved subject to no-slip and specified surface temperature conditions. At t = 0 an impulsive heat flux is applied in the form of a jump in surface temperature. An asymptotic solution valid for large Grashof numbers and small times following the impulsive startup is constructed. Two small parameters have been identified and based on this the flow variables are expanded in a double series in powers of these parameters. The non-zero leading-order terms in the asymptotic expansions have been determined analytically and the corresponding heat transfer coefficient has been found. Future work will involve obtaining numerical solutions.","PeriodicalId":36958,"journal":{"name":"International Journal of Computational Methods and Experimental Measurements","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An analytical study of the early stages of unsteady free convective flow from a differentially heated rotating sphere at large Grashof numbers\",\"authors\":\"S. D’Alessio\",\"doi\":\"10.2495/CMEM-V7-N1-57-67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates the unsteady free convective flow of a viscous incompressible fluid from a differentially heated rotating sphere. The flow is assumed to remain laminar and to possess equatorial and azimuthal symmetry. The governing Navier-Stokes and energy equations are posed in terms of a scaled stream function vorticity formulation and are solved subject to no-slip and specified surface temperature conditions. At t = 0 an impulsive heat flux is applied in the form of a jump in surface temperature. An asymptotic solution valid for large Grashof numbers and small times following the impulsive startup is constructed. Two small parameters have been identified and based on this the flow variables are expanded in a double series in powers of these parameters. The non-zero leading-order terms in the asymptotic expansions have been determined analytically and the corresponding heat transfer coefficient has been found. Future work will involve obtaining numerical solutions.\",\"PeriodicalId\":36958,\"journal\":{\"name\":\"International Journal of Computational Methods and Experimental Measurements\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Methods and Experimental Measurements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/CMEM-V7-N1-57-67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods and Experimental Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/CMEM-V7-N1-57-67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了粘性不可压缩流体在差热旋转球体中的非定常自由对流流动。假定气流保持层流,并具有赤道和方位角对称性。控制Navier-Stokes方程和能量方程以尺度流函数涡度公式表示,并在无滑移和指定表面温度条件下求解。在t = 0时,以表面温度跳跃的形式施加脉冲热通量。构造了一个对脉冲启动后的大格拉西夫数和小时间有效的渐近解。确定了两个小参数,并在此基础上将流动变量展开为这些参数幂的双级数。用解析法确定了渐近展开式中的非零首阶项,并求出了相应的换热系数。今后的工作将包括求得数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An analytical study of the early stages of unsteady free convective flow from a differentially heated rotating sphere at large Grashof numbers
This research investigates the unsteady free convective flow of a viscous incompressible fluid from a differentially heated rotating sphere. The flow is assumed to remain laminar and to possess equatorial and azimuthal symmetry. The governing Navier-Stokes and energy equations are posed in terms of a scaled stream function vorticity formulation and are solved subject to no-slip and specified surface temperature conditions. At t = 0 an impulsive heat flux is applied in the form of a jump in surface temperature. An asymptotic solution valid for large Grashof numbers and small times following the impulsive startup is constructed. Two small parameters have been identified and based on this the flow variables are expanded in a double series in powers of these parameters. The non-zero leading-order terms in the asymptotic expansions have been determined analytically and the corresponding heat transfer coefficient has been found. Future work will involve obtaining numerical solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
24
审稿时长
33 weeks
期刊最新文献
IndianFoodNet: Detecting Indian Food Items Using Deep Learning CFD Simulation of Premixed Flame in Counter Burner under the Influence of a Magnetic Field Chest Freezer Performance with Non-Condensable Gases Stress Distribution in Cantilever Beams with Different Hole Shapes: A Numerical Analysis Combined Impact of Joule Heating, Activation Energy, and Viscous Dissipation on Ternary Nanofluid Flow over Three Different Geometries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1