Janjira Piladaeng, S. Ejaz Ahmed, Supranee Lisawadi
{"title":"非线性增长模型中的惩罚、后预测和后收缩策略","authors":"Janjira Piladaeng, S. Ejaz Ahmed, Supranee Lisawadi","doi":"10.1111/anzs.12373","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In nonlinear growth models, we considered the parameter estimation under subspace information for low-dimensional and high-dimensional data. We proposed novel estimators based on pretest and shrinkage strategies to improve the estimation efficiency and to establish asymptotic properties. We used simulation studies and a real data example to confirm the theoretical results. We also applied two well-known penalised methods—least absolute shrinkage and selection operator (LASSO) and adaptive LASSO (aLASSO)—for the dimensional reduction of the predictor variables. The results demonstrated that the pretest and shrinkage estimation strategies performed well in parameter estimations when the subspace information was incorrect for both low- and high-dimensional regimes.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"64 3","pages":"381-405"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Penalised, post-pretest, and post-shrinkage strategies in nonlinear growth models\",\"authors\":\"Janjira Piladaeng, S. Ejaz Ahmed, Supranee Lisawadi\",\"doi\":\"10.1111/anzs.12373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In nonlinear growth models, we considered the parameter estimation under subspace information for low-dimensional and high-dimensional data. We proposed novel estimators based on pretest and shrinkage strategies to improve the estimation efficiency and to establish asymptotic properties. We used simulation studies and a real data example to confirm the theoretical results. We also applied two well-known penalised methods—least absolute shrinkage and selection operator (LASSO) and adaptive LASSO (aLASSO)—for the dimensional reduction of the predictor variables. The results demonstrated that the pretest and shrinkage estimation strategies performed well in parameter estimations when the subspace information was incorrect for both low- and high-dimensional regimes.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"64 3\",\"pages\":\"381-405\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12373\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12373","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Penalised, post-pretest, and post-shrinkage strategies in nonlinear growth models
In nonlinear growth models, we considered the parameter estimation under subspace information for low-dimensional and high-dimensional data. We proposed novel estimators based on pretest and shrinkage strategies to improve the estimation efficiency and to establish asymptotic properties. We used simulation studies and a real data example to confirm the theoretical results. We also applied two well-known penalised methods—least absolute shrinkage and selection operator (LASSO) and adaptive LASSO (aLASSO)—for the dimensional reduction of the predictor variables. The results demonstrated that the pretest and shrinkage estimation strategies performed well in parameter estimations when the subspace information was incorrect for both low- and high-dimensional regimes.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.