机器人辅助ASD诊断协议的分层POMDP框架

Frano Petric, Z. Kovačić
{"title":"机器人辅助ASD诊断协议的分层POMDP框架","authors":"Frano Petric, Z. Kovačić","doi":"10.1109/HRI.2019.8673295","DOIUrl":null,"url":null,"abstract":"Since the diagnosis of autism spectrum disorder (ASD) relies heavily on behavioral observations by experienced clinician, we seek to investigate whether parts of this job can be autonomously performed by a humanoid robot using only sensors available on-board. To that end, we developed a robot-assisted ASD diagnostic protocol. In this work we propose the Partially observable Markov decision process (POMDP) framework for such protocol which enables the robot to infer information about the state of the child based on observations of child's behavior. We extend our previous work by developing a protocol POMDP model which uses tasks of the protocol as actions. We devise a method to interface protocol and task models by using belief at the end of a task to generate observations for the protocol POMDP, resulting in a hierarchical POMDP framework. We evaluate our approach through an exploratory study with fifteen children (seven typically developing and eight with ASD).","PeriodicalId":6600,"journal":{"name":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","volume":"39 1","pages":"286-293"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical POMDP Framework for a Robot-Assisted ASD Diagnostic Protocol\",\"authors\":\"Frano Petric, Z. Kovačić\",\"doi\":\"10.1109/HRI.2019.8673295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the diagnosis of autism spectrum disorder (ASD) relies heavily on behavioral observations by experienced clinician, we seek to investigate whether parts of this job can be autonomously performed by a humanoid robot using only sensors available on-board. To that end, we developed a robot-assisted ASD diagnostic protocol. In this work we propose the Partially observable Markov decision process (POMDP) framework for such protocol which enables the robot to infer information about the state of the child based on observations of child's behavior. We extend our previous work by developing a protocol POMDP model which uses tasks of the protocol as actions. We devise a method to interface protocol and task models by using belief at the end of a task to generate observations for the protocol POMDP, resulting in a hierarchical POMDP framework. We evaluate our approach through an exploratory study with fifteen children (seven typically developing and eight with ASD).\",\"PeriodicalId\":6600,\"journal\":{\"name\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"volume\":\"39 1\",\"pages\":\"286-293\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HRI.2019.8673295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HRI.2019.8673295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于自闭症谱系障碍(ASD)的诊断在很大程度上依赖于经验丰富的临床医生的行为观察,我们试图研究是否部分工作可以由人形机器人自主完成,仅使用机载传感器。为此,我们开发了一个机器人辅助的ASD诊断方案。在这项工作中,我们提出了该协议的部分可观察马尔可夫决策过程(POMDP)框架,该框架使机器人能够根据对儿童行为的观察推断有关儿童状态的信息。我们通过开发一个协议POMDP模型来扩展我们以前的工作,该模型使用协议的任务作为操作。我们设计了一种连接协议和任务模型的方法,通过在任务结束时使用信念来生成协议POMDP的观察值,从而产生分层的POMDP框架。我们通过对15名儿童(7名发育正常,8名患有ASD)的探索性研究来评估我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical POMDP Framework for a Robot-Assisted ASD Diagnostic Protocol
Since the diagnosis of autism spectrum disorder (ASD) relies heavily on behavioral observations by experienced clinician, we seek to investigate whether parts of this job can be autonomously performed by a humanoid robot using only sensors available on-board. To that end, we developed a robot-assisted ASD diagnostic protocol. In this work we propose the Partially observable Markov decision process (POMDP) framework for such protocol which enables the robot to infer information about the state of the child based on observations of child's behavior. We extend our previous work by developing a protocol POMDP model which uses tasks of the protocol as actions. We devise a method to interface protocol and task models by using belief at the end of a task to generate observations for the protocol POMDP, resulting in a hierarchical POMDP framework. We evaluate our approach through an exploratory study with fifteen children (seven typically developing and eight with ASD).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Arpi, a Social Robot for Children with Epilepsy AMIGUS: A Robot Companion for Students (Video Abstract) MAPPO: The Assistance Pet for Oncological Children (Video Abstract) ACM/IEEE International Conference on Human-Robot Interaction, HRI 2022, Sapporo, Hokkaido, Japan, March 7 - 10, 2022 Leveraging Non-Experts and Formal Methods to Automatically Correct Robot Failures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1