{"title":"快速分类分布强化学习与复杂性分析","authors":"Markus Böck, C. Heitzinger","doi":"10.1137/20m1364436","DOIUrl":null,"url":null,"abstract":". In distributional reinforcement learning, the entire distribution of the return instead of just the expected return is modeled. The approach with categorical distributions as the approximation method is well-known in Q-learning, and convergence results have been established in the tabular case. In this work, speedy Q-learning is extended to categorical distributions, a finite-time analysis is performed, and probably approximately correct bounds in terms of the Cram´er distance are established. It is shown that also in the distributional case the new update rule yields faster policy evaluation in comparison to the standard Q-learning one and that the sample complexity is essentially the same as the one of the value-based algorithmic counterpart. Without the need for more state-action-reward samples, one gains significantly more information about the return with categorical distributions. Even though the results do not easily extend to the case of policy control, a slight modification to the update rule yields promising numerical results.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"11 1","pages":"675-693"},"PeriodicalIF":1.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Speedy Categorical Distributional Reinforcement Learning and Complexity Analysis\",\"authors\":\"Markus Böck, C. Heitzinger\",\"doi\":\"10.1137/20m1364436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In distributional reinforcement learning, the entire distribution of the return instead of just the expected return is modeled. The approach with categorical distributions as the approximation method is well-known in Q-learning, and convergence results have been established in the tabular case. In this work, speedy Q-learning is extended to categorical distributions, a finite-time analysis is performed, and probably approximately correct bounds in terms of the Cram´er distance are established. It is shown that also in the distributional case the new update rule yields faster policy evaluation in comparison to the standard Q-learning one and that the sample complexity is essentially the same as the one of the value-based algorithmic counterpart. Without the need for more state-action-reward samples, one gains significantly more information about the return with categorical distributions. Even though the results do not easily extend to the case of policy control, a slight modification to the update rule yields promising numerical results.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"11 1\",\"pages\":\"675-693\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1364436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1364436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Speedy Categorical Distributional Reinforcement Learning and Complexity Analysis
. In distributional reinforcement learning, the entire distribution of the return instead of just the expected return is modeled. The approach with categorical distributions as the approximation method is well-known in Q-learning, and convergence results have been established in the tabular case. In this work, speedy Q-learning is extended to categorical distributions, a finite-time analysis is performed, and probably approximately correct bounds in terms of the Cram´er distance are established. It is shown that also in the distributional case the new update rule yields faster policy evaluation in comparison to the standard Q-learning one and that the sample complexity is essentially the same as the one of the value-based algorithmic counterpart. Without the need for more state-action-reward samples, one gains significantly more information about the return with categorical distributions. Even though the results do not easily extend to the case of policy control, a slight modification to the update rule yields promising numerical results.