关于规定分布的混合几何

F. Nielsen, R. Nock
{"title":"关于规定分布的混合几何","authors":"F. Nielsen, R. Nock","doi":"10.1109/ICASSP.2018.8461869","DOIUrl":null,"url":null,"abstract":"We consider the space of w-mixtures that are finite statistical mixtures sharing the same prescribed component distributions, like Gaussian mixture models sharing the same components. The information geometry induced by the Kullback-Leibler (KL) divergence yields a dually flat space where the KL divergence between two w-mixtures amounts to a Bregman divergence for the negative Shannon entropy generator, called the Shannon information. Furthermore, we prove that the skew Jensen-Shannon statistical divergence between w-mixtures amount to skew Jensen divergences on their parameters and state several divergence inequalities between w-mixtures and their closures.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"84 1","pages":"2861-2865"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"On the Geometry of Mixtures of Prescribed Distributions\",\"authors\":\"F. Nielsen, R. Nock\",\"doi\":\"10.1109/ICASSP.2018.8461869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the space of w-mixtures that are finite statistical mixtures sharing the same prescribed component distributions, like Gaussian mixture models sharing the same components. The information geometry induced by the Kullback-Leibler (KL) divergence yields a dually flat space where the KL divergence between two w-mixtures amounts to a Bregman divergence for the negative Shannon entropy generator, called the Shannon information. Furthermore, we prove that the skew Jensen-Shannon statistical divergence between w-mixtures amount to skew Jensen divergences on their parameters and state several divergence inequalities between w-mixtures and their closures.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"84 1\",\"pages\":\"2861-2865\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们考虑具有相同规定分量分布的有限统计混合w-混合物的空间,就像具有相同分量的高斯混合模型一样。由Kullback-Leibler (KL)散度引起的信息几何产生一个对偶平坦空间,其中两个w混合物之间的KL散度相当于负香农熵发生器的Bregman散度,称为香农信息。进一步证明了w-混合物之间的偏Jensen- shannon统计散度等于w-混合物参数上的偏Jensen散度,并给出了w-混合物及其闭包之间的几个散度不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Geometry of Mixtures of Prescribed Distributions
We consider the space of w-mixtures that are finite statistical mixtures sharing the same prescribed component distributions, like Gaussian mixture models sharing the same components. The information geometry induced by the Kullback-Leibler (KL) divergence yields a dually flat space where the KL divergence between two w-mixtures amounts to a Bregman divergence for the negative Shannon entropy generator, called the Shannon information. Furthermore, we prove that the skew Jensen-Shannon statistical divergence between w-mixtures amount to skew Jensen divergences on their parameters and state several divergence inequalities between w-mixtures and their closures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1