一种增强有色噪声语音的广义子空间方法

Y. Hu, P. Loizou
{"title":"一种增强有色噪声语音的广义子空间方法","authors":"Y. Hu, P. Loizou","doi":"10.1109/TSA.2003.814458","DOIUrl":null,"url":null,"abstract":"A generalized subspace approach is proposed for enhancement of speech corrupted by colored noise. A nonunitary transform, based on the simultaneous diagonalization of the clean speech and noise covariance matrices, is used to project the noisy signal onto a signal-plus-noise subspace and a noise subspace. The clean signal is estimated by nulling the signal components in the noise subspace and retaining the components in the signal subspace. The applied transform has built-in prewhitening and can therefore be used in general for colored noise. The proposed approach is shown to be a generalization of the approach proposed by Y. Ephraim and H.L. Van Trees (see ibid., vol.3, p.251-66, 1995) for white noise. Two estimators are derived based on the nonunitary transform, one based on time-domain constraints and one based on spectral domain constraints. Objective and subjective measures demonstrate improvements over other subspace-based methods when tested with TIMIT sentences corrupted with speech-shaped noise and multi-talker babble.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"46 1","pages":"334-341"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"406","resultStr":"{\"title\":\"A generalized subspace approach for enhancing speech corrupted by colored noise\",\"authors\":\"Y. Hu, P. Loizou\",\"doi\":\"10.1109/TSA.2003.814458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generalized subspace approach is proposed for enhancement of speech corrupted by colored noise. A nonunitary transform, based on the simultaneous diagonalization of the clean speech and noise covariance matrices, is used to project the noisy signal onto a signal-plus-noise subspace and a noise subspace. The clean signal is estimated by nulling the signal components in the noise subspace and retaining the components in the signal subspace. The applied transform has built-in prewhitening and can therefore be used in general for colored noise. The proposed approach is shown to be a generalization of the approach proposed by Y. Ephraim and H.L. Van Trees (see ibid., vol.3, p.251-66, 1995) for white noise. Two estimators are derived based on the nonunitary transform, one based on time-domain constraints and one based on spectral domain constraints. Objective and subjective measures demonstrate improvements over other subspace-based methods when tested with TIMIT sentences corrupted with speech-shaped noise and multi-talker babble.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"46 1\",\"pages\":\"334-341\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"406\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.814458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.814458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 406

摘要

提出了一种广义子空间方法来增强有色噪声干扰下的语音。基于清洁语音和噪声协方差矩阵的同时对角化,采用非酉变换将噪声信号投影到信号加噪声子空间和噪声子空间上。通过消除噪声子空间中的信号分量并保留信号子空间中的分量来估计干净信号。应用的变换有内置的预白,因此可以用于有色噪声。所提出的方法被证明是Y. Ephraim和H.L. Van Trees提出的白噪声方法的推广(同上,第3卷,第251-66页,1995)。推导了基于非酉变换的两个估计量,一个基于时域约束,一个基于谱域约束。在使用被语音形状噪声和多说话者胡言乱语损坏的TIMIT句子进行测试时,客观和主观测量都比其他基于子空间的方法有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A generalized subspace approach for enhancing speech corrupted by colored noise
A generalized subspace approach is proposed for enhancement of speech corrupted by colored noise. A nonunitary transform, based on the simultaneous diagonalization of the clean speech and noise covariance matrices, is used to project the noisy signal onto a signal-plus-noise subspace and a noise subspace. The clean signal is estimated by nulling the signal components in the noise subspace and retaining the components in the signal subspace. The applied transform has built-in prewhitening and can therefore be used in general for colored noise. The proposed approach is shown to be a generalization of the approach proposed by Y. Ephraim and H.L. Van Trees (see ibid., vol.3, p.251-66, 1995) for white noise. Two estimators are derived based on the nonunitary transform, one based on time-domain constraints and one based on spectral domain constraints. Objective and subjective measures demonstrate improvements over other subspace-based methods when tested with TIMIT sentences corrupted with speech-shaped noise and multi-talker babble.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Errata to "Using Steady-State Suppression to Improve Speech Intelligibility in Reverberant Environments for Elderly Listeners" Farewell Editorial Inaugural Editorial: Riding the Tidal Wave of Human-Centric Information Processing - Innovate, Outreach, Collaborate, Connect, Expand, and Win Three-Dimensional Sound Field Reproduction Using Multiple Circular Loudspeaker Arrays Introduction to the Special Issue on Processing Reverberant Speech: Methodologies and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1