{"title":"基于最小散度的Copula模型半参数估计仿真研究","authors":"M. Mohammadi, M. Amini, M. Emadi","doi":"10.19139/soic-2310-5070-974","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"457 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Simulation Study of Semiparametric Estimation in Copula Models Based on Minimum Alpha-Divergence\",\"authors\":\"M. Mohammadi, M. Amini, M. Emadi\",\"doi\":\"10.19139/soic-2310-5070-974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"457 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Simulation Study of Semiparametric Estimation in Copula Models Based on Minimum Alpha-Divergence
The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.