基于最小散度的Copula模型半参数估计仿真研究

M. Mohammadi, M. Amini, M. Emadi
{"title":"基于最小散度的Copula模型半参数估计仿真研究","authors":"M. Mohammadi, M. Amini, M. Emadi","doi":"10.19139/soic-2310-5070-974","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"457 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Simulation Study of Semiparametric Estimation in Copula Models Based on Minimum Alpha-Divergence\",\"authors\":\"M. Mohammadi, M. Amini, M. Emadi\",\"doi\":\"10.19139/soic-2310-5070-974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"457 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是介绍两种估计耦合参数的半参数方法。这些方法是基于用局部似然概率变换方法得到的非参数的联结密度估计与真联结密度函数之间的最小α散度。基于Hellinger距离和Neyman散度作为alpha -散度的特殊情况,进行蒙特卡罗研究来衡量这些方法的性能。仿真结果与最大伪似然(MPL)估计作为一种传统的估计方法在众所周知的二元联结模型中进行了比较。结果表明,基于最小伪海灵格距离估计的方法在小样本量和弱依赖性情况下具有良好的性能。将参数估计方法应用于实际水文数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Simulation Study of Semiparametric Estimation in Copula Models Based on Minimum Alpha-Divergence
The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1