使用时间序列和深度学习算法预测印度黄金价格

P. Shankar, M. K. Reddy
{"title":"使用时间序列和深度学习算法预测印度黄金价格","authors":"P. Shankar, M. K. Reddy","doi":"10.35940/ijeat.d2537.0610521","DOIUrl":null,"url":null,"abstract":"The primary object of this paper is to compare the\ntraditional time series models with deep learning algorithm. The\nARIMA model is developed to forecast Indian Gold prices using\ndaily data for the period 2016 to 2020 obtained from World Gold\nCouncil. We fitted the ARIMA (2,1,2) model which exhibited the\nleast AIC values. In the meanwhile, MLP, CNN and LSTM\nmodels are also examined to forecast the gold prices in India.\nMean absolute error, mean absolute percentage error and root\nmean squared errors used to evaluate the forecasting\nperformance of the models. Hence, LSTM model superior than\nthat of the other three models for forecasting the gold prices in\nIndia.","PeriodicalId":23601,"journal":{"name":"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Forecasting Gold Prices in India using Time series and Deep Learning Algorithms\",\"authors\":\"P. Shankar, M. K. Reddy\",\"doi\":\"10.35940/ijeat.d2537.0610521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary object of this paper is to compare the\\ntraditional time series models with deep learning algorithm. The\\nARIMA model is developed to forecast Indian Gold prices using\\ndaily data for the period 2016 to 2020 obtained from World Gold\\nCouncil. We fitted the ARIMA (2,1,2) model which exhibited the\\nleast AIC values. In the meanwhile, MLP, CNN and LSTM\\nmodels are also examined to forecast the gold prices in India.\\nMean absolute error, mean absolute percentage error and root\\nmean squared errors used to evaluate the forecasting\\nperformance of the models. Hence, LSTM model superior than\\nthat of the other three models for forecasting the gold prices in\\nIndia.\",\"PeriodicalId\":23601,\"journal\":{\"name\":\"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35940/ijeat.d2537.0610521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.d2537.0610521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要目的是将传统的时间序列模型与深度学习算法进行比较。arima模型是根据世界黄金协会2016年至2020年的每日数据来预测印度黄金价格的。拟合出AIC值最小的ARIMA(2,1,2)模型。同时,运用MLP、CNN和lstm模型对印度黄金价格进行预测。平均绝对误差、平均绝对百分比误差和均方根误差用于评价模型的预测性能。因此,LSTM模型在预测印度黄金价格方面优于其他三种模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting Gold Prices in India using Time series and Deep Learning Algorithms
The primary object of this paper is to compare the traditional time series models with deep learning algorithm. The ARIMA model is developed to forecast Indian Gold prices using daily data for the period 2016 to 2020 obtained from World Gold Council. We fitted the ARIMA (2,1,2) model which exhibited the least AIC values. In the meanwhile, MLP, CNN and LSTM models are also examined to forecast the gold prices in India. Mean absolute error, mean absolute percentage error and root mean squared errors used to evaluate the forecasting performance of the models. Hence, LSTM model superior than that of the other three models for forecasting the gold prices in India.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cycling Trends in Scotland during the Early Phase of the COVID Pandemic 'Unity in Diversity': Centralised British Identity in the Post-War Work of Robert Colquhoun and William Scott Health modelling of transport in low-and-middle income countries: A case study of New Delhi, India Global Diversity in Higher Education Workforces: Towards Openness Modern Indian Utopian Art and Literature: An Introduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1