Andreas Dyreborg Christoffersen, Jesper M⊘ller, Heidi S⊘gaard Christensen
{"title":"模拟人类大脑皮层锥体细胞的柱状结构","authors":"Andreas Dyreborg Christoffersen, Jesper M⊘ller, Heidi S⊘gaard Christensen","doi":"10.1111/anzs.12321","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For modelling the location of pyramidal cells in the human cerebral cortex, we suggest a hierarchical point process in that exhibits anisotropy in the form of cylinders extending along the <i>z</i>-axis. The model consists first of a generalised shot noise Cox process for the <i>xy</i>-coordinates, providing cylindrical clusters, and next of a Markov random field model for the <i>z</i>-coordinates conditioned on the <i>xy</i>-coordinates, providing either repulsion, aggregation or both within specified areas of interaction. Several cases of these hierarchical point processes are fitted to two pyramidal cell data sets, and of these a final model allowing for both repulsion and attraction between the points seem adequate. We discuss how the final model relates to the so-called minicolumn hypothesis in neuroscience.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/anzs.12321","citationCount":"7","resultStr":"{\"title\":\"Modelling columnarity of pyramidal cells in the human cerebral cortex\",\"authors\":\"Andreas Dyreborg Christoffersen, Jesper M⊘ller, Heidi S⊘gaard Christensen\",\"doi\":\"10.1111/anzs.12321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>For modelling the location of pyramidal cells in the human cerebral cortex, we suggest a hierarchical point process in that exhibits anisotropy in the form of cylinders extending along the <i>z</i>-axis. The model consists first of a generalised shot noise Cox process for the <i>xy</i>-coordinates, providing cylindrical clusters, and next of a Markov random field model for the <i>z</i>-coordinates conditioned on the <i>xy</i>-coordinates, providing either repulsion, aggregation or both within specified areas of interaction. Several cases of these hierarchical point processes are fitted to two pyramidal cell data sets, and of these a final model allowing for both repulsion and attraction between the points seem adequate. We discuss how the final model relates to the so-called minicolumn hypothesis in neuroscience.</p>\\n </div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/anzs.12321\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling columnarity of pyramidal cells in the human cerebral cortex
For modelling the location of pyramidal cells in the human cerebral cortex, we suggest a hierarchical point process in that exhibits anisotropy in the form of cylinders extending along the z-axis. The model consists first of a generalised shot noise Cox process for the xy-coordinates, providing cylindrical clusters, and next of a Markov random field model for the z-coordinates conditioned on the xy-coordinates, providing either repulsion, aggregation or both within specified areas of interaction. Several cases of these hierarchical point processes are fitted to two pyramidal cell data sets, and of these a final model allowing for both repulsion and attraction between the points seem adequate. We discuss how the final model relates to the so-called minicolumn hypothesis in neuroscience.