Zhi Zhao, Marco Banterle, L. Bottolo, S. Richardson, A. Lewin, M. Zucknick
{"title":"BayesSUR:一个用于线性回归中高维多元贝叶斯变量和协方差选择的R包","authors":"Zhi Zhao, Marco Banterle, L. Bottolo, S. Richardson, A. Lewin, M. Zucknick","doi":"10.18637/jss.v100.i11","DOIUrl":null,"url":null,"abstract":"In molecular biology, advances in high-throughput technologies have made it possible to study complex multivariate phenotypes and their simultaneous associations with highdimensional genomic and other omics data, a problem that can be studied with highdimensional multi-response regression, where the response variables are potentially highly correlated. To this purpose, we recently introduced several multivariate Bayesian variable and covariance selection models, e.g., Bayesian estimation methods for sparse seemingly unrelated regression for variable and covariance selection. Several variable selection priors have been implemented in this context, in particular the hotspot detection prior for latent variable inclusion indicators, which results in sparse variable selection for associations between predictors and multiple phenotypes. Here, we also propose an alternative, which uses a Markov random field (MRF) prior for incorporating prior knowledge about the dependence structure of the inclusion indicators. Inference of Bayesian seemingly unrelated regression (SUR) by Markov chain Monte Carlo methods is made computationally feasible by factorisation of the covariance matrix amongst the response variables. In this paper we present BayesSUR, an R package, which allows the user to easily specify and run a range of different Bayesian SUR models, which have been implemented in C++ for computational efficiency. The R package allows the specification of the models in a modular way, where the user chooses the priors for variable selection and for covariance selection separately. We demonstrate the performance of sparse SUR models with the hotspot prior and spike-and-slab MRF prior on synthetic and real data sets representing eQTL or mQTL studies and in vitro anti-cancer drug screening studies as examples for typical applications.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"54 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"BayesSUR: An R Package for High-Dimensional Multivariate Bayesian Variable and Covariance Selection in Linear Regression\",\"authors\":\"Zhi Zhao, Marco Banterle, L. Bottolo, S. Richardson, A. Lewin, M. Zucknick\",\"doi\":\"10.18637/jss.v100.i11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In molecular biology, advances in high-throughput technologies have made it possible to study complex multivariate phenotypes and their simultaneous associations with highdimensional genomic and other omics data, a problem that can be studied with highdimensional multi-response regression, where the response variables are potentially highly correlated. To this purpose, we recently introduced several multivariate Bayesian variable and covariance selection models, e.g., Bayesian estimation methods for sparse seemingly unrelated regression for variable and covariance selection. Several variable selection priors have been implemented in this context, in particular the hotspot detection prior for latent variable inclusion indicators, which results in sparse variable selection for associations between predictors and multiple phenotypes. Here, we also propose an alternative, which uses a Markov random field (MRF) prior for incorporating prior knowledge about the dependence structure of the inclusion indicators. Inference of Bayesian seemingly unrelated regression (SUR) by Markov chain Monte Carlo methods is made computationally feasible by factorisation of the covariance matrix amongst the response variables. In this paper we present BayesSUR, an R package, which allows the user to easily specify and run a range of different Bayesian SUR models, which have been implemented in C++ for computational efficiency. The R package allows the specification of the models in a modular way, where the user chooses the priors for variable selection and for covariance selection separately. We demonstrate the performance of sparse SUR models with the hotspot prior and spike-and-slab MRF prior on synthetic and real data sets representing eQTL or mQTL studies and in vitro anti-cancer drug screening studies as examples for typical applications.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v100.i11\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v100.i11","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
BayesSUR: An R Package for High-Dimensional Multivariate Bayesian Variable and Covariance Selection in Linear Regression
In molecular biology, advances in high-throughput technologies have made it possible to study complex multivariate phenotypes and their simultaneous associations with highdimensional genomic and other omics data, a problem that can be studied with highdimensional multi-response regression, where the response variables are potentially highly correlated. To this purpose, we recently introduced several multivariate Bayesian variable and covariance selection models, e.g., Bayesian estimation methods for sparse seemingly unrelated regression for variable and covariance selection. Several variable selection priors have been implemented in this context, in particular the hotspot detection prior for latent variable inclusion indicators, which results in sparse variable selection for associations between predictors and multiple phenotypes. Here, we also propose an alternative, which uses a Markov random field (MRF) prior for incorporating prior knowledge about the dependence structure of the inclusion indicators. Inference of Bayesian seemingly unrelated regression (SUR) by Markov chain Monte Carlo methods is made computationally feasible by factorisation of the covariance matrix amongst the response variables. In this paper we present BayesSUR, an R package, which allows the user to easily specify and run a range of different Bayesian SUR models, which have been implemented in C++ for computational efficiency. The R package allows the specification of the models in a modular way, where the user chooses the priors for variable selection and for covariance selection separately. We demonstrate the performance of sparse SUR models with the hotspot prior and spike-and-slab MRF prior on synthetic and real data sets representing eQTL or mQTL studies and in vitro anti-cancer drug screening studies as examples for typical applications.
期刊介绍:
The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.