{"title":"含粒子射流在受限几何空间内传播的实验研究","authors":"Mohnish Kapil, S. Balasubramanian","doi":"10.1115/1.4051076","DOIUrl":null,"url":null,"abstract":"\n The spreading characteristics of particle-bearing jets down a gentle slope in a uniform ambient with confined side-walls are reported through a series of laboratory experiments. A round water jet is mixed with solid particles having particle volume fraction ranging between 0% and 0.4%. The jet Reynolds number is varied between Re = 3000 and 8000. We document that the jet front position varies with time t as xf∝t2/3. The jet front propagation in the presence of side-walls is found to be higher than the unconfined case and is attributed to the recirculation due to the confinement that increases the flow inertia and accelerates the flow. The jet propagation is found to be self-similar and is unaffected by the variations in the volume fraction and Re. The sediment pattern near the source, formed by the settling of the particles, exhibits a similar tear-drop shape, which is well-predicted using the unconfined jet theory that assumes a Gaussian velocity profile. The results have implication in engineering and environmental flows, where higher jet propagation rate for confined jets should be modeled accurately without modifying the sedimentation dynamics.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Propagation of Particle-Bearing Jets in a Confined Geometry\",\"authors\":\"Mohnish Kapil, S. Balasubramanian\",\"doi\":\"10.1115/1.4051076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The spreading characteristics of particle-bearing jets down a gentle slope in a uniform ambient with confined side-walls are reported through a series of laboratory experiments. A round water jet is mixed with solid particles having particle volume fraction ranging between 0% and 0.4%. The jet Reynolds number is varied between Re = 3000 and 8000. We document that the jet front position varies with time t as xf∝t2/3. The jet front propagation in the presence of side-walls is found to be higher than the unconfined case and is attributed to the recirculation due to the confinement that increases the flow inertia and accelerates the flow. The jet propagation is found to be self-similar and is unaffected by the variations in the volume fraction and Re. The sediment pattern near the source, formed by the settling of the particles, exhibits a similar tear-drop shape, which is well-predicted using the unconfined jet theory that assumes a Gaussian velocity profile. The results have implication in engineering and environmental flows, where higher jet propagation rate for confined jets should be modeled accurately without modifying the sedimentation dynamics.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051076\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051076","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental Study on Propagation of Particle-Bearing Jets in a Confined Geometry
The spreading characteristics of particle-bearing jets down a gentle slope in a uniform ambient with confined side-walls are reported through a series of laboratory experiments. A round water jet is mixed with solid particles having particle volume fraction ranging between 0% and 0.4%. The jet Reynolds number is varied between Re = 3000 and 8000. We document that the jet front position varies with time t as xf∝t2/3. The jet front propagation in the presence of side-walls is found to be higher than the unconfined case and is attributed to the recirculation due to the confinement that increases the flow inertia and accelerates the flow. The jet propagation is found to be self-similar and is unaffected by the variations in the volume fraction and Re. The sediment pattern near the source, formed by the settling of the particles, exhibits a similar tear-drop shape, which is well-predicted using the unconfined jet theory that assumes a Gaussian velocity profile. The results have implication in engineering and environmental flows, where higher jet propagation rate for confined jets should be modeled accurately without modifying the sedimentation dynamics.
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes