通过使用LANDO(“关联年龄和深度建模”)模型集合改善年龄-深度关系

IF 2.7 Q2 GEOCHEMISTRY & GEOPHYSICS Geochronology Pub Date : 2022-05-18 DOI:10.5194/gchron-4-269-2022
G. Pfalz, B. Diekmann, J. Freytag, L. Syrykh, D. Subetto, B. Biskaborn
{"title":"通过使用LANDO(“关联年龄和深度建模”)模型集合改善年龄-深度关系","authors":"G. Pfalz, B. Diekmann, J. Freytag, L. Syrykh, D. Subetto, B. Biskaborn","doi":"10.5194/gchron-4-269-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Age–depth relationships are the key elements in paleoenvironmental studies\nto place proxy measurements into a temporal context. However, potential\ninfluencing factors of the available radiocarbon data and the associated\nmodeling process can cause serious divergences of age–depth relationships\nfrom true chronologies, which is particularly challenging for\npaleolimnological studies in Arctic regions. This paper provides\ngeoscientists with a tool-assisted approach to compare outputs from\nage–depth modeling systems and to strengthen the robustness of age–depth\nrelationships. We primarily focused on the development of age determination\ndata from a data collection of high-latitude lake systems (50 to 90∘ N, 55 sediment cores, and a total of 602 dating points).\nOur approach used five age–depth modeling systems (Bacon, Bchron, clam, hamstr, Undatable) that we linked through\na multi-language Jupyter Notebook called LANDO (“Linked age and depth\nmodeling”). Within LANDO we implemented a pipeline from data\nintegration to model comparison to allow users to investigate the outputs of the modeling systems. In this paper, we focused on highlighting three\ndifferent case studies: comparing multiple modeling systems for one sediment\ncore with a continuously deposited succession of dating points (CS1), for\none sediment core with scattered dating points (CS2), and for multiple\nsediment cores (CS3). For the first case study (CS1), we showed how we\nfacilitate the output data from all modeling systems to create an ensemble\nage–depth model. In the special case of scattered dating points (CS2), we\nintroduced an adapted method that uses independent proxy data to assess the\nperformance of each modeling system in representing lithological changes.\nBased on this evaluation, we reproduced the characteristics of an existing\nage–depth model (Lake Ilirney, EN18208) without removing age determination\ndata. For multiple sediment cores (CS3) we found that when considering the\nPleistocene–Holocene transition, the main regime changes in sedimentation\nrates do not occur synchronously for all lakes. We linked this behavior to\nthe uncertainty within the dating and modeling process, as well as the local variability in catchment settings affecting the accumulation rates of the sediment cores within the collection near the glacial–interglacial\ntransition.\n","PeriodicalId":12723,"journal":{"name":"Geochronology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving age–depth relationships by using the LANDO (“Linked age and depth modeling”) model ensemble\",\"authors\":\"G. Pfalz, B. Diekmann, J. Freytag, L. Syrykh, D. Subetto, B. Biskaborn\",\"doi\":\"10.5194/gchron-4-269-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Age–depth relationships are the key elements in paleoenvironmental studies\\nto place proxy measurements into a temporal context. However, potential\\ninfluencing factors of the available radiocarbon data and the associated\\nmodeling process can cause serious divergences of age–depth relationships\\nfrom true chronologies, which is particularly challenging for\\npaleolimnological studies in Arctic regions. This paper provides\\ngeoscientists with a tool-assisted approach to compare outputs from\\nage–depth modeling systems and to strengthen the robustness of age–depth\\nrelationships. We primarily focused on the development of age determination\\ndata from a data collection of high-latitude lake systems (50 to 90∘ N, 55 sediment cores, and a total of 602 dating points).\\nOur approach used five age–depth modeling systems (Bacon, Bchron, clam, hamstr, Undatable) that we linked through\\na multi-language Jupyter Notebook called LANDO (“Linked age and depth\\nmodeling”). Within LANDO we implemented a pipeline from data\\nintegration to model comparison to allow users to investigate the outputs of the modeling systems. In this paper, we focused on highlighting three\\ndifferent case studies: comparing multiple modeling systems for one sediment\\ncore with a continuously deposited succession of dating points (CS1), for\\none sediment core with scattered dating points (CS2), and for multiple\\nsediment cores (CS3). For the first case study (CS1), we showed how we\\nfacilitate the output data from all modeling systems to create an ensemble\\nage–depth model. In the special case of scattered dating points (CS2), we\\nintroduced an adapted method that uses independent proxy data to assess the\\nperformance of each modeling system in representing lithological changes.\\nBased on this evaluation, we reproduced the characteristics of an existing\\nage–depth model (Lake Ilirney, EN18208) without removing age determination\\ndata. For multiple sediment cores (CS3) we found that when considering the\\nPleistocene–Holocene transition, the main regime changes in sedimentation\\nrates do not occur synchronously for all lakes. We linked this behavior to\\nthe uncertainty within the dating and modeling process, as well as the local variability in catchment settings affecting the accumulation rates of the sediment cores within the collection near the glacial–interglacial\\ntransition.\\n\",\"PeriodicalId\":12723,\"journal\":{\"name\":\"Geochronology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochronology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/gchron-4-269-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gchron-4-269-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要在古环境研究中,年龄-深度关系是将代用测量置于时间背景下的关键要素。然而,现有放射性碳数据的潜在影响因素和相关的建模过程可能导致年龄-深度关系与真实年表的严重分歧,这对北极地区的古湖泊学研究尤其具有挑战性。本文为地球科学家提供了一种工具辅助方法来比较深度建模系统的输出,并加强年龄-深度关系的鲁棒性。我们主要关注高纬度湖泊系统(50至90°N, 55个沉积物岩心,共602个测年点)数据采集的年龄测定数据的发展。我们的方法使用了五个年龄深度建模系统(Bacon, Bchron, clam, hamstr, Undatable),我们通过一个多语言的Jupyter Notebook(称为LANDO(链接年龄和深度建模))将它们链接起来。在LANDO中,我们实现了从数据集成到模型比较的管道,以允许用户调查建模系统的输出。在本文中,我们重点介绍了三种不同的案例研究:一个沉积岩心具有连续沉积演替的测年点(CS1),一个沉积岩心具有分散测年点(CS2),以及多个沉积岩心(CS3)的多个模拟系统的比较。对于第一个案例研究(CS1),我们展示了如何简化来自所有建模系统的输出数据以创建集成深度模型。在分散测年点(CS2)的特殊情况下,我们引入了一种适应性方法,该方法使用独立的代理数据来评估每个建模系统在表示岩性变化方面的性能。基于这一评价,我们重现了现有年龄-深度模型(Lake Ilirney, EN18208)的特征,而没有删除年龄确定数据。对于多个沉积物岩心(CS3),我们发现当考虑更新世-全新世过渡时,所有湖泊的沉积速率的主要制度变化并非同步发生。我们将这种行为与定年和建模过程中的不确定性联系起来,以及流域环境中的局部变化,这些变化影响了冰川-间冰期过渡附近收集的沉积物岩心的积累速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving age–depth relationships by using the LANDO (“Linked age and depth modeling”) model ensemble
Abstract. Age–depth relationships are the key elements in paleoenvironmental studies to place proxy measurements into a temporal context. However, potential influencing factors of the available radiocarbon data and the associated modeling process can cause serious divergences of age–depth relationships from true chronologies, which is particularly challenging for paleolimnological studies in Arctic regions. This paper provides geoscientists with a tool-assisted approach to compare outputs from age–depth modeling systems and to strengthen the robustness of age–depth relationships. We primarily focused on the development of age determination data from a data collection of high-latitude lake systems (50 to 90∘ N, 55 sediment cores, and a total of 602 dating points). Our approach used five age–depth modeling systems (Bacon, Bchron, clam, hamstr, Undatable) that we linked through a multi-language Jupyter Notebook called LANDO (“Linked age and depth modeling”). Within LANDO we implemented a pipeline from data integration to model comparison to allow users to investigate the outputs of the modeling systems. In this paper, we focused on highlighting three different case studies: comparing multiple modeling systems for one sediment core with a continuously deposited succession of dating points (CS1), for one sediment core with scattered dating points (CS2), and for multiple sediment cores (CS3). For the first case study (CS1), we showed how we facilitate the output data from all modeling systems to create an ensemble age–depth model. In the special case of scattered dating points (CS2), we introduced an adapted method that uses independent proxy data to assess the performance of each modeling system in representing lithological changes. Based on this evaluation, we reproduced the characteristics of an existing age–depth model (Lake Ilirney, EN18208) without removing age determination data. For multiple sediment cores (CS3) we found that when considering the Pleistocene–Holocene transition, the main regime changes in sedimentation rates do not occur synchronously for all lakes. We linked this behavior to the uncertainty within the dating and modeling process, as well as the local variability in catchment settings affecting the accumulation rates of the sediment cores within the collection near the glacial–interglacial transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochronology
Geochronology Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
0.00%
发文量
35
审稿时长
19 weeks
期刊最新文献
The daughter–parent plot: a tool for analyzing thermochronological data New age constraints reveal moraine stabilization thousands of years after deposition during the last deglaciation of western New York, USA Errorchrons and anchored isochrons in IsoplotR Cosmogenic 3He chronology of postglacial lava flows at Mt Ruapehu, Aotearoa / New Zealand Effect of chemical abrasion of zircon on SIMS U–Pb, δ18O, trace element, and LA-ICPMS trace element and Lu–Hf isotopic analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1